scholarly journals Asymptomatic COVID-19 Adult Outpatients identified as Significant Viable SARS-CoV-2 Shedders 

Author(s):  
Marie Glenet ◽  
Anne-Laure Lebreil ◽  
Laetitia Heng ◽  
Yohan N’Guyen ◽  
Ittah Meyer ◽  
...  

Abstract Differential kinetics of RNA loads and infectious viral levels in the upper respiratory tract between asymptomatic and symptomatic SARS-CoV-2 infected adult outpatients remain unclear limiting recommendations that may guide clinical management, infection control measures and occupational health decisions. In the present investigation, 496 (2.5%) of 17,911 French adult outpatients were positive for an upper respiratory tract SARS-CoV-2 RNA detection by a quantitative RT-PCR assay, of which 180 (36.3%) were COVID-19 asymptomatic. Of these adult asymptomatic viral shedders, 84.4% had mean to high RNA viral loads (Ct values<30) which median value was significantly higher than that observed in symptomatic subjects (P=0.029), and 50.6% were positive by cell culture assays of their upper respiratory tract specimens. Our findings indicate that COVID-19 asymptomatic adult outpatients are significant viable SARS-CoV-2 shedders in their upper respiratory tract playing a major potential role as SARS-CoV-2 transmitters in various epidemiological transmission chains, promoting COVID-19 resurgence in populations.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie Glenet ◽  
Anne-Laure Lebreil ◽  
Laetitia Heng ◽  
Yohan N’Guyen ◽  
Ittah Meyer ◽  
...  

AbstractDifferential kinetics of RNA loads and infectious viral levels in the upper respiratory tract between asymptomatic and symptomatic SARS-CoV-2 infected adult outpatients remain unclear limiting recommendations that may guide clinical management, infection control measures and occupational health decisions. In the present investigation, 496 (2.8%) of 17,911 French adult outpatients were positive for an upper respiratory tract SARS-CoV-2 RNA detection by a quantitative RT-PCR assay, of which 180 (36.3%) were COVID-19 asymptomatic. Of these adult asymptomatic viral shedders, 75% had mean to high RNA viral loads (Ct values < 30) which median value was significantly higher than that observed in symptomatic subjects (P = 0.029), and 50.6% were positive by cell culture assays of their upper respiratory tract specimens. Our findings indicate that COVID-19 asymptomatic adult outpatients are significant viable SARS-CoV-2 shedders in their upper respiratory tract playing a major potential role as SARS-CoV-2 transmitters in various epidemiological transmission chains, promoting COVID-19 resurgence in populations.


Author(s):  
Ruian Ke ◽  
Carolin Zitzmann ◽  
Ruy M. Ribeiro ◽  
Alan S. Perelson

SARS-CoV-2 is a human pathogen that causes infection in both the upper respiratory tract (URT) and the lower respiratory tract (LRT). The viral kinetics of SARS-CoV-2 infection and how they relate to infectiousness and disease progression are not well understood. Here, we develop data-driven viral dynamic models of SARS-CoV-2 infection in both the URT and LRT. We fit the models to viral load data from patients with likely infection dates known, we estimated that infected individuals with a longer incubation period had lower rates of viral growth, took longer to reach peak viremia in the URT, and had higher chances of presymptomatic transmission. We then developed a model linking viral load to infectiousness. We found that to explain the substantial fraction of transmissions occurring presymptomatically, the infectiousness of a person should depend on a saturating function of the viral load, making the logarithm of the URT viral load a better surrogate of infectiousness than the viral load itself. Comparing the roles of target-cell limitation, the innate immune response, proliferation of target cells and spatial infection in the LRT, we found that spatial dissemination in the lungs is likely to be an important process in sustaining the prolonged high viral loads. Overall, our models provide a quantitative framework for predicting how SARS-CoV-2 within-host dynamics determine infectiousness and represent a step towards quantifying how viral load dynamics and the immune responses determine disease severity.


ILAR Journal ◽  
2012 ◽  
Vol 53 (1) ◽  
pp. E43-E54 ◽  
Author(s):  
L. Steukers ◽  
A. P. Vandekerckhove ◽  
W. Van den Broeck ◽  
S. Glorieux ◽  
H. J. Nauwynck

2022 ◽  
Author(s):  
Katherine McMahan ◽  
Victoria Giffin ◽  
Lisa Tostanoski ◽  
Benjamin Chung ◽  
Mazuba Siamatu ◽  
...  

The SARS-CoV-2 Omicron (B.1.1.529) variant has proven highly transmissible and has outcompeted the Delta variant in many regions of the world. Early reports have also suggested that Omicron may result in less severe clinical disease in humans. Here we show that Omicron is less pathogenic than prior SARS-CoV-2 variants in Syrian golden hamsters. Infection of hamsters with the SARS-CoV-2 WA1/2020, Alpha, Beta, or Delta strains led to 4-10% weight loss by day 4 and 10-17% weight loss by day 6, as expected. In contrast, infection of hamsters with two different Omicron challenge stocks did not result in any detectable weight loss, even at high challenge doses. Omicron infection still led to substantial viral replication in both the upper and lower respiratory tracts and pulmonary pathology, but with a trend towards higher viral loads in nasal turbinates and lower viral loads in lung parenchyma compared with WA1/2020 infection. These data suggest that the SARS-CoV-2 Omicron variant may result in more robust upper respiratory tract infection but less severe lower respiratory tract clinical disease compared with prior SARS-CoV-2 variants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eric C. Rouchka ◽  
Julia H. Chariker ◽  
Brian Alejandro ◽  
Robert S. Adcock ◽  
Richa Singhal ◽  
...  

AbstractKey elements for viral pathogenesis include viral strains, viral load, co-infection, and host responses. Several studies analyzing these factors in the function of disease severity of have been published; however, no studies have shown how all of these factors interplay within a defined cohort. To address this important question, we sought to understand how these four key components interplay in a cohort of COVID-19 patients. We determined the viral loads and gene expression using high throughput sequencing and various virological methods. We found that viral loads in the upper respiratory tract in COVID-19 patients at an early phase of infection vary widely. While the majority of nasopharyngeal (NP) samples have a viral load lower than the limit of detection of infectious viruses, there are samples with an extraordinary amount of SARS-CoV-2 RNA and a high viral titer. No specific viral factors were identified that are associated with high viral loads. Host gene expression analysis showed that viral loads were strongly correlated with cellular antiviral responses. Interestingly, however, COVID-19 patients who experience mild symptoms have a higher viral load than those with severe complications, indicating that naso-pharyngeal viral load may not be a key factor of the clinical outcomes of COVID-19. The metagenomics analysis revealed that the microflora in the upper respiratory tract of COVID-19 patients with high viral loads were dominated by SARS-CoV-2, with a high degree of dysbiosis. Finally, we found a strong inverse correlation between upregulation of interferon responses and disease severity. Overall our study suggests that a high viral load in the upper respiratory tract may not be a critical factor for severe symptoms; rather, dampened antiviral responses may be a critical factor for a severe outcome from the infection.


1998 ◽  
Vol 36 (5) ◽  
pp. 1260-1265 ◽  
Author(s):  
T. D. C. Hamilton ◽  
J. M. Roe ◽  
C. M. Hayes ◽  
A. J. F. Webster

Pigs reared in intensive production systems are continuously exposed to ammonia released by the microbial degradation of their excrement. Exposure to this gas has been shown to increase the severity of the disease progressive atrophic rhinitis by facilitating colonization of the pig’s upper respiratory tract by Pasteurella multocida. The etiological mechanism responsible for this synergy was investigated by studying the colonization kinetics of P. multocida enhanced by ammonia and comparing them with those evoked by an established disease model. Three-week-old Large White piglets were weaned and allocated to five experimental groups (groups A to E). Pigs in groups A and B were exposed continuously to ammonia at 20 ppm for the first 2 weeks of the study. Pigs in group C were pretreated with 0.5 ml of 1% acetic acid per nostril on days −2 and −1 of the study. On day 0 all the pigs in groups A, C, and D were inoculated with 1.4 × 108 toxigenic P. multocida organisms given by the intranasal route. The kinetics of P. multocida colonization were established by testing samples obtained at weekly intervals throughout the study. The study was terminated on day 37, and the extent of turbinate atrophy was determined by using a morphometric index. The results of the study showed that exposure to aerial ammonia for a limited period had a marked effect on the colonization of toxigenic P. multocidain the nasal cavities of pigs, which resulted in the almost total exclusion of commensal flora. In contrast, ammonia had only a limited effect on P. multocida colonization at the tonsil. The exacerbation of P. multocida colonization by ammonia was restricted to the period of ammonia exposure, and the number ofP. multocida organisms colonizing the upper respiratory tract declined rapidly upon the cessation of exposure to ammonia. During the exposure period, the ammonia levels in mucus recovered from the nasal cavity and tonsil were found to be 7- and 3.5-fold higher, respectively, than the levels in samples taken from unexposed controls. Acetic acid pretreatment also induced marked colonization of the nasal cavity which, in contrast to that induced by ammonia, persisted throughout the time course of the study. Furthermore, acetic acid pretreatment induced marked but transient colonization of the tonsil. These findings suggest that the synergistic effect of ammonia acts through an etiological mechanism different from that evoked by acetic acid pretreatment. A strong correlation was found between the numbers of P. multocida organisms isolated from the nasal cavity and the severity of clinical lesions, as determined by using a morphometric index. The data presented in the paper highlight the potential importance of ammonia as an exacerbating factor in respiratory disease of intensively reared livestock.


2021 ◽  
pp. eabh0755
Author(s):  
Neeltje van Doremalen ◽  
Jyothi N. Purushotham ◽  
Jonathan E. Schulz ◽  
Myndi G. Holbrook ◽  
Trenton Bushmaker ◽  
...  

ChAdOx1 nCoV-19/AZD1222 is an approved adenovirus-based vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) currently being deployed globally. Previous studies in rhesus macaques revealed that intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 provided protection against pneumonia but did not reduce shedding of SARS-CoV-2 from the upper respiratory tract. Here, we investigated whether intranasally administered ChAdOx1 nCoV-19 reduces detection of virus in nasal swabs after challenging vaccinated macaques and hamsters with SARS-CoV-2 carrying a D614G mutation in the spike protein. Viral loads in swabs obtained from intranasally vaccinated hamsters were decreased compared to control hamsters, and no viral RNA or infectious virus was found in lung tissue after a direct challenge or after direct contact with infected hamsters. Intranasal vaccination of rhesus macaques resulted in reduced virus concentrations in nasal swabs and a reduction in viral loads in bronchoalveolar lavage and lower respiratory tract tissue. Intranasal vaccination with ChAdOx1 nCoV-19/AZD1222 reduced virus concentrations in nasal swabs in two different SARS-CoV-2 animal models, warranting further investigation as a potential vaccination route for COVID-19 vaccines.


Author(s):  
N. Y. Kravets ◽  

Millions of people have died from acute infections in the past century, but they have been effectively fought through the development of modern vaccines, antibiotics and infection control measures. Chronic infections are slower than acute infections, and the symptoms are often vague, difficult, and sometimes impossible to cure with antibiotics. Important signs of chronic biofilm infections are extreme resistance to antibiotics and many other common antimicrobials, as well as the extraordinary ability to avoid the host’s defenses. One such disease is chronic inflammatory lesions of the tonsils, the main infectious agents of which are gram-positive cocci, strains Staphylococcus spp., Streptococcus spp. The purpose of the study of the ability of strains of Staphylococcus aureus to form a biofilm isolated from the surface of the epithelium of the upper respiratory tract of children. Clinical strains of Staphylococcus aureus bacteria obtained from the oropharynx of 32 children with tonsils affected by the inflammatory process at the age of 4-12 years (median – 7) were studied. The results of microbiological examination of biomaterial obtained from children with chronic inflammatory lesions of the tonsils showed that in 32 samples 25 strains of S. aureus were identified, 12 of them (48%) are capable of forming a biofilm, and 13 strains (52%) (not adhesive) are not had this ability. The study of the dynamics of biofilm formation by selected strains of S. aureus showed an increase in optical density (OS) during three days of cultivation, ranging from 0.143


Sign in / Sign up

Export Citation Format

Share Document