scholarly journals Chromosome and Ploidy Analysis of Winter Hardy Hibiscus Species by FISH and Flow Cytometry

Author(s):  
Deen Mohammad Deepo ◽  
Islam MD Mazha ◽  
Yoon-Jung Hwang ◽  
Hong-Yul Kim ◽  
Chang Kil Kim ◽  
...  

Abstract Determination of nuclear DNA content, genome sizes, and ploidy level and, information on cytogenetic characteristics are all prerequisite of modern plant breeding. However, cytogenetic study of Hibiscus species is often hampered by the similarity in morphology and by the small size of mitotic chromosomes. The goal of the study was to ascertain the chromosome number, karyomorphology, distribution of 5S and 18S rDNA loci, chromosome length, and centromere positions as well as the ploidy level, genome sizes, 2C-DNA content of winter-hardy Hibiscus: H. syriacus ‘Saejamyung’, H. sinosyriacus ‘Seobong’, H. moscheutos ‘Luna Red’ and, H. paramutabilis. 5S rDNA and 18S rDNA loci were detected by fluorescence in situ hybridization (FISH). According to the FISH results, there are two 5S rDNA loci in H. syriacus, H. sinosyriacus, and H. moscheutos, and four 5S rDNA loci in H. paramutabilis. The range in length of somatic chromosomes in H. syriacus, H. sinosyriacus, H. moscheutos, and H. paramutabilis is 2.66- 7.06, 3.18-7.31, 2.91-5.23, and 4.75-7.60 µm, respectively. The 2C-DNA content of H. syriacus, H. sinosyriacus, and H. moscheutos are very similar, the amount was 4.06, 4.11, and, 2.06 pg, respectively whereas, H. paramutabilis has nearly double and the amount was 4.18 pg. These findings will contribute to the detailed cytogenetic assessment of Hibiscus and thus benefit plant breeding in this genus.

2015 ◽  
Vol 57 (1) ◽  
pp. 104-113
Author(s):  
Sandra Cichorz ◽  
Maria Gośka ◽  
Monika Rewers

AbstractSinceM. sinensisAnderss.,M. sacchariflorus(Maxim.) Hack. andM. ×giganteusJ.M.Greef & Deuter ex Hodk. and Renvoize have considerably the highest potential for biomass production amongMiscanthusAnderss. species, there is an urgent need to broaden the knowledge about cytological characteristics required for their improvement. In this study our objectives were to assess the genome size variation among eighteenMiscanthusaccessions, as well as estimation of the monoploid genome size (2C and Cx) of theM. sinensiscultivars, which have not been analyzed yet. The characterization of threeMiscanthusspecies was performed with the use of flow cytometry and analysis of the stomatal length. The triploid (2n = 3x = 57)M. sinensis‘Goliath’ andM. ×giganteusclones possessed the highest 2C DNA content (8.34 pg and 7.43 pg, respectively). The intermediate 2C-values were found in the nuclei of the diploid (2n = 2x = 38)M. sinensisaccessions (5.52–5.72 pg), whereas they were the lowest in the diploid (2n = 2x = 38)M. sacchariflorusecotypes (4.58–4.59 pg). The presented study revealed interspecific variation of nuclear DNA content (P<0.01) and therefore allowed for recognition of particular taxa, inter- and intraspecific hybrids and prediction of potential parental components. Moreover, intraspecific genome size variation (P<0.01) was observed inM. sinensiscultivars at 3.62%. The values of the stomatal size obtained for the triploidM. ×giganteus‘Great Britain’ (mean 30.70 μm) or ‘Canada’ (mean 29.67 μm) and diploidM. sinensis‘Graziella’ (mean 29.96 μm) did not differ significantly, therefore this parameter is not recommended for ploidy estimation.


1998 ◽  
Vol 76 (1) ◽  
pp. 157-165 ◽  
Author(s):  
Jérôme Thibault

Flow cytometry (FCM) has been used to estimate the nuclear DNA content of 11 Salix species and 5 hybrids. One hundred and sixty nine individuals were studied including 159 individuals from a sequence of 32 communities along a stretch of river in France and 10 individuals from French and English collections for comparison. Isolated nuclei were stained with propidium iodide. FCM was a significantly more practical and rapid technique than that of establishing the karyotype to survey many samples of Salix for variation in ploidy. The 2C DNA amounts for diploid species ranged from 0.76 to 0.98 pg, and tetraploid values ranged from 1.62 to 1.80 pg. The DNA values were consistent with the known ploidy levels. With the exception of a doubtful Salix xquercifolia, ploidy levels and DNA amounts of hybrids were intermediate compared with those of their parents. Intraspecific variation of nuclear DNA values including instrumental variation was low (i.e., 6-11% at the same ploidy level). FCM appeared to be an accurate tool for determination of Salix triploid hybrids. However, it remains limited concerning hybrids from crosses between species of the same ploidy level. Results suggest that natural hybridization might not be frequent in the communities studied, although they have been subject to disturbance. Previous overestimates of hybridization frequency in willows were probably due to misinterpretation of the effects of the environment on Salix spp. morphology; however, the extent and mechanisms of introgression in the genus remain to be further investigated. Key words: flow cytometry, Salix, hybridization, nuclear DNA content, riparian vegetation, disturbance.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1950
Author(s):  
Guadalupe Palomino ◽  
Javier Martínez-Ramón ◽  
Verónica Cepeda-Cornejo ◽  
Miriam Ladd-Otero ◽  
Patricia Romero ◽  
...  

Echeveria is a polyploid genus with a wide diversity of species and morphologies. The number of species registered for Echeveria is approximately 170; many of them are native to Mexico. This genus is of special interest in cytogenetic research because it has a variety of chromosome numbers and ploidy levels. Additionally, there are no studies concerning nuclear DNA content and the extent of endopolyploidy. This work aims to investigate the cytogenetic characteristics of 23 species of Echeveria collected in 9 states of Mexico, analyzing 2n chromosome numbers, ploidy level, nuclear DNA content, and endopolyploidy levels. Chromosome numbers were obtained from root tips. DNA content was obtained from the leaf parenchyma, which was processed according to the two-step protocol with Otto solutions and propidium iodide as fluorochrome, and then analyzed by flow cytometry. From the 23 species of Echeveria analyzed, 16 species lacked previous reports of 2n chromosome numbers. The 2n chromosome numbers found and analyzed in this research for Echeveria species ranged from 24 to 270. The range of 2C nuclear DNA amounts ranged from 1.26 pg in E. catorce to 7.70 pg in E. roseiflora, while the 1C values were 616 Mbp and 753 Mbp, respectively, for the same species. However, differences in the level of endopolyploidy nuclei were found, corresponding to 4 endocycles (8C, 16C, 32C and 64C) in E. olivacea, E. catorce, E. juarezensis and E. perezcalixii. In contrast, E. longiflora presented 3 endocycles (8C, 16C and 32C) and E. roseiflora presented 2 endocycles (8C and 16C). It has been suggested that polyploidization and diploidization processes, together with the presence of endopolyploidy, allowed Echeveria species to adapt and colonize new adverse environments.


2014 ◽  
Vol 86 (4) ◽  
pp. 1849-1862 ◽  
Author(s):  
ANDREI C.P. NUNES ◽  
WELLINGTON R. CLARINDO

In Bromeliaceae, cytogenetic and flow cytometry analyses have been performed to clarify systematic and evolutionary aspects. Karyotyping approaches have shown the relatively high chromosome number, similar morphology and small size of the chromosomes. These facts have prevented a correct chromosome counting and characterization. Authors have established a basic chromosome number of x = 25 for Bromeliaceae. Recently, one karyomorphological analysis revealed that x = 25 is no longer the basic chromosome number, whose genome may have a polyploid origin. Besides cytogenetic characterization, the 2C DNA content of bromeliads has been measured. Nuclear DNA content has varied from 2C = 0.60 to 2C = 3.34 picograms. Thus, in relation to most angiosperms, the 2C DNA content of Bromeliaceae species as well as their chromosome size can be considered relatively small. In spite of some advances, cytogenetic and flow cytometry data are extremely scarce in this group. In this context, this review reports the state of the art in karyotype characterization and nuclear DNA content measurement in Bromeliaceae, emphasizing the main problems and suggesting prospective solutions and ideas for future research.


Genome ◽  
1996 ◽  
Vol 39 (2) ◽  
pp. 258-265 ◽  
Author(s):  
I. Galasso ◽  
D. Pignone ◽  
M. Frediani ◽  
M. Maggiani ◽  
R. Cremonini

The karyotypes of three accessions, one each from three annual species of the genus Cicer, namely Cicer arietinum, Cicer reticulation, and Cicer echinospermum, were examined and compared using C-banding, the fluorochromes chromomycin A3, DAPI, and Hoechst 33258, in situ hybridization of the 18S–5.8S–25S and 5S rDNA sequences, and silver staining. The nuclear DNA content of the three species and the amount of heterochromatin were also determined. The results suggest an evolutionary pathway in which C. reticulatum is the ancestral species from which both C. arietinum and C. echinospermum are derived with the loss of one pair of satellites; subsequently, C. echinospermum further differentiated by the accumulation of chromosomal rearrangement(s) that gave rise to a hybrid sterility barrier. Key words : Cicer, C-banding, fluorochromes, Ag staining, rRNA genes.


2018 ◽  
Vol 32 (3) ◽  
pp. 431-439 ◽  
Author(s):  
Hamidou F. Sakhanokho ◽  
M Nurul Islam-Faridi ◽  
Kanniah Rajasekaran ◽  
Cecil T. Pounders

2002 ◽  
Vol 127 (5) ◽  
pp. 767-775 ◽  
Author(s):  
Rengong Meng ◽  
Chad Finn

Nuclear DNA flow cytometry was used to differentiate ploidy level and determine nuclear DNA content in Rubus. Nuclei suspensions were prepared from leaf discs of young leaves following published protocols with modifications. DNA was stained with propidium iodide. Measurement of fluorescence of 40 genotypes, whose published ploidy ranged from diploid to dodecaploid, indicated that fluorescence increased with an increase in chromosome number. Ploidy level accounted for 99% of the variation in fluorescence intensity (r2 = 0.99) and variation among ploidy levels was much higher than within ploidy levels. This protocol was used successfully for genotypes representing eight different Rubus subgenera. Rubus ursinus Cham. and Schldl., a native blackberry species in the Pacific Northwest, which has been reported to have 6x, 8x, 9x, 10x, 11x, and 12x forms, was extensively tested. Genotypes of R. ursinus were predominantly 12x, but 6x, 7x, 8x, 9x, 11x, and 13x forms were found as well. Attempts to confirm the 13x estimates with manual counts were unsuccessful. Ploidy level of 103 genotypes in the USDA-ARS breeding program was determined by flow cytometry. Flow cytometry confirmed that genotypes from crosses among 7x and 4x parents had chromosome numbers that must be the result of nonreduced gametes. This technique was effective in differentiating chromosome numbers differing by 1x, but was not able to differentiate aneuploids. Nuclear DNA contents of 21 diploid Rubus species from five subgenera were determined by flow cytometry. Idaeobatus, Chamaebatus, and Anaplobatus were significantly lower in DNA content than those of Rubus and Cylactis. In the Rubus subgenus, R. hispidus and R. canadensis had the lowest DNA content and R. sanctus had the highest DNA content, 0.59 and 0.75 pg, respectively. Idaeobatus had greater variation in DNA content among diploid species than the Rubus subgenus, with the highest being from R. ellipticus (0.69 pg) and lowest from R. illecebrosus (0.47 pg).


2013 ◽  
Vol 138 (3) ◽  
pp. 205-209 ◽  
Author(s):  
Hamidou F. Sakhanokho ◽  
Nurul Islam-Faridi

Christia obcordata is an intriguing small-sized house plant with unusual and attractive features such as its striped leaves. Because very little is known about the plant, we conducted an investigation of its genome and chromosomes. The number of chromosomes was determined using a protoplast technique to prepare root tip chromosome spread and was found to be 2n = 2x = 20. Flow cytometry was used to determine nuclear DNA content (1C = 0.65 pg = 634.4 Mb) for C. obcordata and AT/GC composition was shown to be AT% = 62.8% ± 0.0% and GC% = 37.2% ± 0.0%. Finally, fluorescent in situ hybridization was used to locate ribosomal RNA gene families in C. obcordata. Ribosomal RNA gene families, viz. 18S-28S and 5S rDNA, are unique cytomolecular landmarks that provide valuable information about the evolutionary organization of a genome. We have identified one locus each of 18S-28S and 5S rDNA. The 18S-28S rDNA is located in the subterminal position on the secondary constriction region [also known as the nucleolus organizer region (NOR)] and the 5S rDNA is located interstitially close to a centromeric position. The basic information gathered in this study on C. obcordata will be helpful in understanding the genetics of this species.


HortScience ◽  
2008 ◽  
Vol 43 (7) ◽  
pp. 2005-2012
Author(s):  
Jessica Gaus Barb ◽  
Dennis J. Werner ◽  
Shyamalrau P. Tallury

Stokesia laevis (J. Hill) Greene is a herbaceous perennial native to the southeastern United States. Most cultivars of Stokesia are diploid (2n = 2x = 14) except for ‘Omega Skyrocket’, a tetraploid (2n = 4x = 28) form selected from a natural population. A comparative study of the karyotypes and meiotic behavior of diploid cultivars, seed-derived accessions of ‘Omega Skyrocket’, synthetically derived autotetraploids, and triploid progeny from these taxa strongly suggest that ‘Omega Skyrocket’ is an autotetraploid form of Stokesia. Total karyotype length, 161 μm and 293 μm, and average chromosome length, 11.5 μm and 10.5 μm, of the diploid cultivars and tetraploid accessions of ‘Omega Skyrocket’, respectively, were determined. The karyotype of the diploid cultivars consisted of eight metacentric (m) and six submetacentric (sm) chromosomes with average arm ratio values ranging from 1.12 to 2.06. The karyotype of ‘Omega Skyrocket’ consisted of 23 m chromosomes and 5 sm chromosomes with average arm ratio values ranging from 1.22 to 2.02. Meiotic pairing in the diploids was normal. No meiotic irregularities such as laggards or bridges were observed and disjunction was balanced (7:7). Accessions of ‘Omega Skyrocket’ demonstrated a high frequency (60%) of quadrivalent formation; however, later stages of meiosis were regular with balanced disjunction (14:14) occurring in 95% of the cells. Meiotic configurations in synthetically derived autotetraploids and triploid hybrids from crosses of diploid cultivars × ‘Omega Skyrocket’ consisted of univalents, bivalents, trivalents, quadrivalents, and pentavalents. Abnormalities, including laggards, unequal and/or premature disjunction, chromosome bridges, and chromosome stickiness were observed. Average nuclear 2C DNA content was 20.3 pg for the diploid cultivars and 39.9 pg for the newly synthesized autotetraploids. Average nuclear 2C DNA content for ‘Omega Skyrocket’ was 37.3 pg, which was 8.2% less than twice the average 2C DNA content of the diploid accessions and 6.4% less than the newly synthesized autotetraploids, suggesting that genomic downsizing in ‘Omega Skyrocket’ has occurred. Similarity of the karyotypes of the diploids and ‘Omega Skyrocket’ and the slight reduction in nuclear DNA content suggest that ‘Omega Skyrocket’ has diverged little from its original diploid progenitor.


Sign in / Sign up

Export Citation Format

Share Document