natural hybridization
Recently Published Documents


TOTAL DOCUMENTS

471
(FIVE YEARS 79)

H-INDEX

39
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Chen Chen ◽  
Zilue Zheng ◽  
Dandan Wu ◽  
Lu Tan ◽  
Cairong Yang ◽  
...  

2021 ◽  
Vol 53 (4) ◽  
pp. 673-684
Author(s):  
N.A. Azka ◽  
Taryono ◽  
R.A. Wulandari

Tea (Camellia sinensis L. [O.] Kuntze) is a highly cross-pollinated and self-incompatible plant. Seeds can be harvested from specific individual mother plants in polyclonal tea gardens. Whether the pollen donor plays an important role in seed formation remains unclear. This study aimed to identify the male parents of 72 natural hybridized progenies (F1) from one female parent on the basis of a putative specific allele by using simple-sequence repeat (SSR) markers and the exclusion-likelihood method with Cervus 3.0 software. The genetic material, which comprised seven accessions of C. sinensis L., was acquired from Assamica planted in the Kayulandak polyclonal seed garden of the Pagilaran tea plantation in Batang District, Central Java, Indonesia, and was studied during 2019 and 2020. The genotype PGL-15 was used as the female parent, whereas the six candidate genotypes PGL-10, GMB-9, GMB-7, TPS-93, GMB-11, and TRI-2025 were used as the male parents. In this study, 13 SSR loci were used to identify the male parents of the F1 progenies obtained through natural hybridization between one female and six male tea accessions. Results indicated that the exclusion-likelihood method, which correctly predicted 100% of the male parents, was more effective than the putative specific allele approach, which correctly predicted only 34.72% of the male parents in the 72 hybridized F1 progenies of tea plants.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1124
Author(s):  
Nazar A. Shapoval ◽  
Roman V. Yakovlev ◽  
Galina N. Kuftina ◽  
Vladimir A. Lukhtanov ◽  
Svyatoslav A. Knyazev ◽  
...  

Natural hybridization is rather widespread and common in animals and can have important evolutionary consequences. In terms of taxonomy, exploring hybridization and introgression is crucial in defining species boundaries and testing taxonomic hypotheses. In the present paper, we report on natural hybrid specimens between Ahlbergia frivaldszkyi (Lederer, 1853) and Callophrys rubi (Linnaeus, 1758). To test the hypothesis of their hybrid origin, we employed the molecular mitochondrial (COI gene) and nuclear (wingless, RPS5, and Ca-ATPase genes) markers commonly used in phylogenetic studies and explored the morphology of the specimens. Our analysis revealed that hybrids bear mitochondrial haplotypes of C. rubi, while nuclear fragments are heterozygous, sharing a combination of A. frivaldszkyi and C. rubi lineages. The hybrid specimens combine morphological characters of both genera. Our results for the first time empirically demonstrate the possibility of genetic introgression between these species and between the genera Callophrys and Ahlbergia on the whole.


Phytotaxa ◽  
2021 ◽  
Vol 527 (4) ◽  
pp. 257-265
Author(s):  
PATRICK DE CASTRO CANTUÁRIA ◽  
DAYSE RAIANE PASSOS KRAHL ◽  
AMAURI HERBERT KRAHL ◽  
GUY CHIRON ◽  
João Batista Fernandes Da Silva ◽  
...  

Natural hybridization has often been recorded within certain genera of orchids, one of them is Catasetum. During a field study in a forest de igapó in Brazilian Amazon, a new natural hybrid was found, it is here described as Catasetum × sheyllae. Its morphological features, mainly the structures of the lip, are intermediate between those of its putative parent species, C. boyi and C. garnettianum, both observed in sympatry.


2021 ◽  
Vol 79 (4) ◽  
pp. 147-156
Author(s):  
Belma Kalamujić Stroil ◽  
Lejla Ušanović ◽  
Abdurahim Kalajdžić ◽  
Lejla Lasić ◽  
Rifat Škrijelj ◽  
...  

Abstract Interspecific hybridization in the Cyprinidae family has been recorded worldwide, with Abramis brama (bream) and Rutilus rutilus (roach) as one of the often-reported hybridizing pairs. The only account of such an event in Bosnia and Herzegovina has been in Modrac Reservoir. Using morphological and molecular markers, the presence of hybrids was surveyed, the hybridization direction was determined and the hybrid group structure in this ecosystem was evaluated. Our findings confirmed unhindered natural hybridization between roach and bream in Modrac Reservoir. Over 50% of the hybrid specimens were classified as F2 hybrids by the NewHybrids software, while the rest were categorized as pure parental form, making it the first such finding in Europe. The analysis of mitochondrial cytochrome b showed that 90% of hybrid individuals were of bream maternal origin. The hybrid group expressed higher mean values of observed heterozygosity and gene diversity than both parental species. Signs of introgressive hybridization between parental species were detected. The hybrid zone of Modrac Reservoir appears to follow the intermediate or “flat” hybrid model based on the balanced distribution of parental and hybrid genotypes. Further investigation is needed to elucidate the factors that enable the survival and mating success of post-F1 individuals.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1250
Author(s):  
Xiaoman Li ◽  
Jinglei Wang ◽  
Yang Qiu ◽  
Haiping Wang ◽  
Peng Wang ◽  
...  

Raphanus has undergone a lengthy evolutionary process and has rich diversity. However, the inter- and intraspecific phylogenetic relationships and genetic diversity of this genus are not well understood. Through SSR-sequencing and multi-analysis of 939 wild, semi-wild and cultivated accessions, we discovered that the European wild radish (EWR) population is separated from cultivated radishes and has a higher genetic diversity. Frequent intraspecific genetic exchanges occurred in the whole cultivated radish (WCR) population; there was considerable genetic differentiation within the European cultivated radish (ECR) population, which could drive radish diversity formation. Among the ECR subpopulations, European primitive cultivated radishes (EPCRs) with higher genetic diversity are most closely related to the EWR population and exhibit a gene flow with rat-tail radishes (RTRs) and black radishes (BRs)/oil radishes (ORs). Among Asian cultivated radishes (ACRs), Chinese big radishes (CBRs) with a relatively high diversity are furthest from the EWR population, and most Japanese/Korean big radishes (JKBRs) are close to CBR accessions, except for a few old Japanese landraces that are closer to the EPCR. The CBR and JKBR accessions are independent of RTR accessions; however, phylogenetic analysis indicates that the RTR is sister to the clade of CBR (including JWR), which suggests that the RTR may share the most recent common ancestry with CBRs and JWRs. In addition, Japanese wild radishes (JWRs), (namely, R. sativus forma raphanistroides) are mainly scattered between CBRs and EPCRs in PCoA analysis. Moreover, JWRs have a strong gene exchange with the JKBR, OR and RTR subpopulations. American wild radishes (AWRs) are closely related to European wild and cultivated radishes, and have a gene flow with European small radishes (ESRs), suggesting that the AWR developed from natural hybridization between the EWR and the ESR. Overall, this demonstrates that Europe was the origin center of the radish, and that Europe, South Asia and East Asia appear to have been three independent domestication centers. The EPCR, AWR and JWR, as semi-wild populations, might have played indispensable transitional roles in radish evolution. Our study provides new perspectives into the origin, evolution and genetic diversity of Raphanus and facilitates the conservation and exploitation of radish germplasm resources.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Boyi Pi ◽  
Jiao Pan ◽  
Mu Xiao ◽  
Xinchang Hu ◽  
Lei Zhang ◽  
...  

Abstract Background CCCH zinc finger family is one of the largest transcription factor families related to multiple biotic and abiotic stresses. Brassica napus L., an allotetraploid oilseed crop formed by natural hybridization between two diploid progenitors, Brassica rapa and Brassica oleracea. A systematic identification of rapeseed CCCH family genes is missing and their functional characterization is still in infancy. Results In this study, 155 CCCH genes, 81 from its parent B. rapa and 74 from B. oleracea, were identified and divided into 15 subfamilies in B. napus. Organization and syntenic analysis explained the distribution and collinearity relationship of CCCH genes, the selection pressure and evolution of duplication gene pairs in B. napus genome. 44 diploid duplication gene pairs and 4 triple duplication gene groups were found in B. napus of CCCH family and the segmental duplication is attributed to most CCCH gene duplication events in B. napus. Nine types of CCCH motifs exist in B. napus CCCH family members, and motif C-X7/8-C-X5-C-X3-H is the most common and a new conserved CCH motif (C-X5-C-X3-H) has been identified. In addition, abundant stress-related cis-elements exist in promoters of 27 subfamily IX (RR-TZF) genes and their expression profiles indicated that RR-TZF genes could be involved in responses to hormone and abiotic stress. Conclusions The results provided a foundation to understand the basic characterization and genes evolution of CCCH gene family in B. napus, and provided potential targets for genetic engineering in Brassicaceae crops in pursuit of stress-tolerant traits.


2021 ◽  
Author(s):  
◽  
Shaun Peter Wilkinson

<p>The perpetuity of coral reefs will ultimately depend on the ability of corals to adapt to changing conditions. Inter-specific hybridization can provide the raw genetic material necessary for adaptation, and stimulate macro-evolutionary leaps during periods of environmental upheaval. Though well-documented in corals, hybridization has yet to be identified in their dinoflagellate symbionts (genus Symbiodinium), despite growing evidence of sexual reproduction in this genus. The integral roles that these symbiotic algae play in coral productivity, reef accretion and ‘coral bleaching’ emphasize the need to better understand their short-term evolutionary potential. In this thesis, I develop new molecular and statistical methodology, and combine lab- and field-based analysis to explore the potential for hybridization between divergent Symbiodinium taxa.  To screen for putative Symbiodinium hybrids, intra-genomic variation was examined within individual symbionts isolated from the reef-building coral Pocillopora damicornis at Lord Howe Island (Australia). A nested quantitative PCR (qPCR) assay was developed to quantify polymorphic internal transcribed spacer 2 (ITS2) sequences within the genome of each symbiont cell. Three genetically distinct Symbiodinium populations were detected co-existing within the symbiont consortium of P. damicornis. Mixed populations of ‘pure’ Symbiodinium types C100 and C109 coexisted with a population of cells hosting co-dominant C100 and C109 ITS2 repeats. Genetically heterogeneous Symbiodinium cells were more common than homogeneous symbionts in four of the six colonies analysed, with a maximum proportional abundance of 89%.  Morphological, functional and ecological attributes of heterogeneous Symbiodinium cells were characterized to assess their candidacy as putative hybrids. The proportional abundance of genetically heterogeneous symbionts was spatially and temporally conserved within colonies, indicating a lack of competition between Symbiodinium populations. However, this abundance ratio varied considerably between colonies separated by metres to tens of metres, and to a greater extent between sites isolated by hundreds to thousands of metres. The local thermal maximum emerged as a significant predictor of the proportional abundance of genetically heterogeneous Symbiodinium cells, suggesting that the distribution of these ‘putative hybrids’ is influenced by a reduced affinity for thermal stress.  Genetically heterogeneous Symbiodinium cells were around 50% larger (by volume) than homogeneous cells, occupied tissue of the coral host at reduced densities, and showed relatively poor light-harvesting efficiency. Colonies hosting a higher proportion of these symbionts suffered a reduction in overall photosynthetic performance (maximum gross photosynthesis normalised to respiration; P:R) at the ambient temperature of 25 °C. This disparity was maintained when the temperature was elevated to simulate the maximum experienced within the LHI lagoon (29 °C). Under these stressful conditions, colonies dominated by putative Symbiodinium hybrids were only marginally capable of net oxygen production.  The influence of putative Symbiodinium hybrids on the growth and survival of P. damicornis was tested by reciprocally transplanting coral colonies between reef sites featuring distinct temperature regimes. Neither calcification nor mortality was influenced by the proportional abundance of genetically heterogeneous cells in the symbiont consortium. This uncoupling of symbiont performance and host fitness may be explained by stochastic events such as predation and disease, which substantially increase variation in growth and mortality in field experiments. Alternatively, it may represent some unknown benefit associated with hosting hybrid symbionts, belying their relatively poor photosynthetic performance, and explaining the widespread abundance of these heterogeneous Symbiodinium cells on the Lord Howe Island reef.  Our inability to maintain many clade C Symbiodinium types in culture prevents direct observations of hybridization between C100 and C109. Unequivocal evidence of this phenomenon will therefore likely remain elusive until high-resolution, single-copy nuclear markers can be developed, since the incomplete displacement of ancestral polymorphisms can leave a similar genomic signature to that of hybridization. However, this study serves to provide an initial proof-of-principle for hybridization between divergent Symbiodinium taxa. In doing so, it highlights the need to better understand the evolutionary processes underpinning coral- and symbiont-adaptation in a changing climate.</p>


2021 ◽  
Author(s):  
◽  
Shaun Peter Wilkinson

<p>The perpetuity of coral reefs will ultimately depend on the ability of corals to adapt to changing conditions. Inter-specific hybridization can provide the raw genetic material necessary for adaptation, and stimulate macro-evolutionary leaps during periods of environmental upheaval. Though well-documented in corals, hybridization has yet to be identified in their dinoflagellate symbionts (genus Symbiodinium), despite growing evidence of sexual reproduction in this genus. The integral roles that these symbiotic algae play in coral productivity, reef accretion and ‘coral bleaching’ emphasize the need to better understand their short-term evolutionary potential. In this thesis, I develop new molecular and statistical methodology, and combine lab- and field-based analysis to explore the potential for hybridization between divergent Symbiodinium taxa.  To screen for putative Symbiodinium hybrids, intra-genomic variation was examined within individual symbionts isolated from the reef-building coral Pocillopora damicornis at Lord Howe Island (Australia). A nested quantitative PCR (qPCR) assay was developed to quantify polymorphic internal transcribed spacer 2 (ITS2) sequences within the genome of each symbiont cell. Three genetically distinct Symbiodinium populations were detected co-existing within the symbiont consortium of P. damicornis. Mixed populations of ‘pure’ Symbiodinium types C100 and C109 coexisted with a population of cells hosting co-dominant C100 and C109 ITS2 repeats. Genetically heterogeneous Symbiodinium cells were more common than homogeneous symbionts in four of the six colonies analysed, with a maximum proportional abundance of 89%.  Morphological, functional and ecological attributes of heterogeneous Symbiodinium cells were characterized to assess their candidacy as putative hybrids. The proportional abundance of genetically heterogeneous symbionts was spatially and temporally conserved within colonies, indicating a lack of competition between Symbiodinium populations. However, this abundance ratio varied considerably between colonies separated by metres to tens of metres, and to a greater extent between sites isolated by hundreds to thousands of metres. The local thermal maximum emerged as a significant predictor of the proportional abundance of genetically heterogeneous Symbiodinium cells, suggesting that the distribution of these ‘putative hybrids’ is influenced by a reduced affinity for thermal stress.  Genetically heterogeneous Symbiodinium cells were around 50% larger (by volume) than homogeneous cells, occupied tissue of the coral host at reduced densities, and showed relatively poor light-harvesting efficiency. Colonies hosting a higher proportion of these symbionts suffered a reduction in overall photosynthetic performance (maximum gross photosynthesis normalised to respiration; P:R) at the ambient temperature of 25 °C. This disparity was maintained when the temperature was elevated to simulate the maximum experienced within the LHI lagoon (29 °C). Under these stressful conditions, colonies dominated by putative Symbiodinium hybrids were only marginally capable of net oxygen production.  The influence of putative Symbiodinium hybrids on the growth and survival of P. damicornis was tested by reciprocally transplanting coral colonies between reef sites featuring distinct temperature regimes. Neither calcification nor mortality was influenced by the proportional abundance of genetically heterogeneous cells in the symbiont consortium. This uncoupling of symbiont performance and host fitness may be explained by stochastic events such as predation and disease, which substantially increase variation in growth and mortality in field experiments. Alternatively, it may represent some unknown benefit associated with hosting hybrid symbionts, belying their relatively poor photosynthetic performance, and explaining the widespread abundance of these heterogeneous Symbiodinium cells on the Lord Howe Island reef.  Our inability to maintain many clade C Symbiodinium types in culture prevents direct observations of hybridization between C100 and C109. Unequivocal evidence of this phenomenon will therefore likely remain elusive until high-resolution, single-copy nuclear markers can be developed, since the incomplete displacement of ancestral polymorphisms can leave a similar genomic signature to that of hybridization. However, this study serves to provide an initial proof-of-principle for hybridization between divergent Symbiodinium taxa. In doing so, it highlights the need to better understand the evolutionary processes underpinning coral- and symbiont-adaptation in a changing climate.</p>


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Zheng ◽  
Li-Jun Yan ◽  
Kevin S. Burgess ◽  
Ya-Huang Luo ◽  
Jia-Yun Zou ◽  
...  

Abstract Background Natural hybridization can influence the adaptive response to selection and accelerate species diversification. Understanding the composition and structure of hybrid zones may elucidate patterns of hybridization processes that are important to the formation and maintenance of species, especially for taxa that have experienced rapidly adaptive radiation. Here, we used morphological traits, ddRAD-seq and plastid DNA sequence data to investigate the structure of a Rhododendron hybrid zone and uncover the hybridization patterns among three sympatric and closely related species. Results Our results show that the hybrid zone is complex, where bi-directional hybridization takes place among the three sympatric parental species: R. spinuliferum, R. scabrifolium, and R. spiciferum. Hybrids between R. spinuliferum and R. spiciferum (R. ×duclouxii) comprise multiple hybrid classes and a high proportion of F1 generation hybrids, while a novel hybrid taxon between R. spinuliferum and R. scabrifolium dominated the F2 generation, but no backcross individuals were detected. The hybrid zone showed basically coincident patterns of population structure between genomic and morphological data. Conclusions Natural hybridization exists among the three Rhododendron species in the hybrid zone, although patterns of hybrid formation vary between hybrid taxa, which may result in different evolutionary outcomes. This study represents a unique opportunity to dissect the ecological and evolutionary mechanisms associated with adaptive radiation of Rhododendron species in a biodiversity hotspot.


Sign in / Sign up

Export Citation Format

Share Document