scholarly journals The Effects of a Mitochondrial Targeted Peptide (Elamipretide/SS31) on BAX Recruitment and Activation During Apoptosis

Author(s):  
Joshua Grosser ◽  
Rachel Fehrman ◽  
Dennis Keefe ◽  
Martin Redmon ◽  
Robert Nickells

Abstract Objective: Elamipretide (SS31) is a mitochondria-targeted peptide that has reported functions of stabilizing mitochondrial cristae structure and improving mitochondrial bioenergetics. Several studies have documented cell protective features of this peptide, including impairment of intrinsic apoptosis by inhibiting the recruitment and activation of the pro-apoptotic BAX protein. We used live-cell imaging of ARPE-19 cells expressing fluorescently labeled BAX, cytochrome c, and a mitochondrial marker to investigate the effect of elamipretide on the kinetics of BAX recruitment, mitochondrial outer membrane permeabilization (as a function of cytochrome c release), and mitochondrial fragmentation, respectively. Result: In nucleofected and plated ARPE-19 cells, elamipretide accelerated the formation of larger mitochondria. In the presence of the apoptotic stimulator, staurosporine, cells treated with elamipretide exhibited moderately slower rates of BAX recruitment. Peptide treatment, however, did not significantly delay the onset of BAX recruitment or the final total amount of BAX that was recruited. Additionally, elamipretide showed no impairment or delay of cytochrome c release or mitochondrial fragmentation, two events associated with normal BAX activation during cell death. These results indicate that the protective effect of elamipretide is not at the level of BAX activity to induce pro-apoptotic mitochondrial dysfunction after the initiation of staurosporine-induced apoptosis.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Joshua A. Grosser ◽  
Rachel L. Fehrman ◽  
Dennis Keefe ◽  
Martin Redmon ◽  
Robert W. Nickells

Abstract Objective Elamipretide (SS31) is a mitochondria-targeted peptide that has reported functions of stabilizing mitochondrial cristae structure and improving mitochondrial bioenergetics. Several studies have documented cell protective features of this peptide, including impairment of intrinsic apoptosis by inhibiting the recruitment and activation of the pro-apoptotic BAX protein. We used live-cell imaging of ARPE-19 cells expressing fluorescently labeled BAX, cytochrome c, and a mitochondrial marker to investigate the effect of elamipretide on the kinetics of BAX recruitment, mitochondrial outer membrane permeabilization (as a function of cytochrome c release), and mitochondrial fragmentation, respectively. Result In nucleofected and plated ARPE-19 cells, elamipretide accelerated the formation of larger mitochondria. In the presence of the apoptotic stimulator, staurosporine, cells treated with elamipretide exhibited moderately slower rates of BAX recruitment. Peptide treatment, however, did not significantly delay the onset of BAX recruitment or the final total amount of BAX that was recruited. Additionally, elamipretide showed no impairment or delay of cytochrome c release or mitochondrial fragmentation, two events associated with normal BAX activation during cell death. These results indicate that the protective effect of elamipretide is not at the level of BAX activity to induce pro-apoptotic mitochondrial dysfunction after the initiation of staurosporine-induced apoptosis.


2007 ◽  
Vol 405 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Emily E. Franklin ◽  
John D. Robertson

Sequential activation of caspases is critical for the execution of apoptosis. Recent evidence suggests caspase 2 is a significant upstream caspase capable of initiating mitochondrial events, such as the release of cytochrome c. In particular, in vitro studies using recombinant proteins have shown that cleaved caspase 2 can induce mitochondrial outer membrane permeabilization directly or by cleaving the BH3-only protein BID (BH3 interacting domain death agonist). However, whether interchain cleavage or activation of procaspase 2 occurs prior to Apaf-1-mediated procaspase 9 activation under more natural conditions remains unresolved. In the present study, we show that Apaf-1-deficient Jurkat T-lymphocytes and mouse embryonic fibroblasts were highly resistant to DNA-damage-induced apoptosis and failed to cleave or activate any apoptotic procaspase, including caspase 2. Significantly, drug-induced cytochrome c release and loss of mitochondrial membrane potential were inhibited in cells lacking Apaf-1. By comparison, procaspase proteolysis and apoptosis were only delayed slightly in Apaf-1-deficient Jurkat cells upon treatment with anti-Fas antibody. Our data support a model in which Apaf-1 is necessary for the cleavage or activation of all procaspases and the promotion of mitochondrial apoptotic events induced by genotoxic drugs.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Li ◽  
Yuanyuan Yang ◽  
You Li ◽  
Yueyue Zhao ◽  
Hong Jiang

Cisplatin- (CDDP) induced acute kidney injury (AKI) limits the clinical use of cisplatin. Several sirtuin (SIRT) family proteins are involved in AKI, while the roles of Sirt5 in cisplatin-induced AKI remain unknown. In the present study, we characterized the role and mechanism of Sirt5 in cisplatin-induced apoptosis using the human kidney 2 (HK-2) cell line. CDDP treatment decreased Sirt5 expression of HK-2 cells in a dose-dependent manner. In addition, Sirt5 overexpression enhanced the metabolic activity in CDDP-treated HK-2 cells while Sirt5 siRNA attenuated it. Forced expression of Sirt5 inhibited CDDP-induced apoptosis while Sirt5 siRNA showed the opposite effects. Accordingly, Sirt5 overexpression inhibited the level of caspase 3 cleavage and cytochrome c levels. Furthermore, we found that Sirt5 increased mitochondrial membrane potentials and ameliorated intracellular ROS production. Mitotracker Red staining indicated that Sirt5 overexpression was able to maintain the mitochondrial density during CDDP treatment. We also investigated possible downstream targets of Sirt5 and found that Sirt5 increased Nrf2, HO-1, and Bcl-2 while it decreased Bax protein expression. Sirt5 siRNA showed the opposite effect on these proteins. The levels of Nrf2, HO-1, and Bcl-2 proteins in HK-2 cells were also decreased after CDDP treatment. Moreover, Nrf2 and Bcl-2 siRNA partly abolished the protecting effect of Sirt5 on CDDP-induced apoptosis and cytochrome c release. Catalase inhibitor 3-AT also abolished the cytoprotective effect of Sirt5. Together, the results demonstrated that Sirt5 attenuated cisplatin-induced apoptosis and mitochondrial injury in human kidney HK-2 cells, possibly through the regulation of Nrf2/HO-1 and Bcl-2.


2002 ◽  
Vol 159 (6) ◽  
pp. 923-929 ◽  
Author(s):  
Damien Arnoult ◽  
Philippe Parone ◽  
Jean-Claude Martinou ◽  
Bruno Antonsson ◽  
Jérôme Estaquier ◽  
...  

Mitochondrial outer membrane permeabilization by proapoptotic Bcl-2 family proteins, such as Bax, plays a crucial role in apoptosis induction. However, whether this only causes the intracytosolic release of inducers of caspase-dependent death, such as cytochrome c, or also of caspase-independent death, such as apoptosis-inducing factor (AIF) remains unknown. Here, we show that on isolated mitochondria, Bax causes the release of cytochrome c, but not of AIF, and the association of AIF with the mitochondrial inner membrane provides a simple explanation for its lack of release upon Bax-mediated outer membrane permeabilization. In cells overexpressing Bax or treated either with the Bax- or Bak-dependent proapoptotic drugs staurosporine or actinomycin D, or with hydrogen peroxide, caspase inhibitors did not affect the intracytosolic translocation of cytochrome c, but prevented that of AIF. These results provide a paradigm for mitochondria-dependent death pathways in which AIF cannot substitute for caspase executioners because its intracytosolic release occurs downstream of that of cytochrome c.


2001 ◽  
Vol 194 (9) ◽  
pp. 1325-1338 ◽  
Author(s):  
Gui-Qiang Wang ◽  
Eva Wieckowski ◽  
Leslie A. Goldstein ◽  
Brian R. Gastman ◽  
Asaf Rabinovitz ◽  
...  

Granzyme B (GrB), a serine protease with substrate specificity similar to the caspase family, is a major component of granule-mediated cytotoxicity of T lymphocytes. Although GrB can directly activate caspases, it induces apoptosis predominantly via Bid cleavage, mitochondrial outer membrane permeabilization, and cytochrome c release. To study the molecular regulators for GrB-mediated mitochondrial apoptotic events, we used a CTL-free cytotoxicity system, wherein target cells are treated with purified GrB and replication-deficient adenovirus (Ad). We report here that the Bcl-2 proapoptotic family member, Bak, plays a dominant role in GrB-mediated mitochondrial apoptotic events. A variant of Jurkat cells, deficient in Bak expression, was resistant to GrB/Ad-mediated apoptosis, as determined by lack of membranous phosphatidylserine exposure, lack of DNA breaks, lack of mitochondrial outer membrane permeabilization, and unchanged expression of inner mitochondrial membrane cardiolipin. The resistance of Bak-deficient cells to GrB/Ad cytotoxicity was reversed by transduction of the Bak gene into these cells. The requirement for both Bid and Bak, was further demonstrated in a cell-free system using purified mitochondria and S-100 cytosol. Purified mitochondria from Bid knockout mice, but not from Bax knockout mice, failed to release cytochrome c in response to autologous S-100 and GrB. Also, Bak-deficient mitochondria did not release cytochrome c in response to GrB-treated cytosol unless recombinant Bak protein was added. These results are the first to report a role for Bak in GrB-mediated mitochondrial apoptosis. This study demonstrates that GrB-cleaved Bid, which differs in size and site of cleavage from caspase-8-cleaved Bid, utilizes Bak for cytochrome c release, and therefore, suggests that deficiency in Bak may serve as a mechanism of immune evasion for tumor or viral infected cells.


2007 ◽  
Vol 18 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Ajoy K. Samraj ◽  
Dennis Sohn ◽  
Klaus Schulze-Osthoff ◽  
Ingo Schmitz

Caspase-9 plays an important role in apoptosis induced by genotoxic stress. Irradiation and anticancer drugs trigger mitochondrial outer membrane permeabilization, resulting in cytochrome c release and caspase-9 activation. Two highly contentious issues, however, remain: It is unclear whether the loss of the mitochondrial membrane potential ΔΨMcontributes to cytochrome c release and whether caspases are involved. Moreover, an unresolved question is whether caspase-2 functions as an initiator in genotoxic stress-induced apoptosis. In the present study, we have identified a mutant Jurkat T-cell line that is deficient in caspase-9 and resistant to apoptosis. Anticancer drugs, however, could activate proapoptotic Bcl-2 proteins and cytochrome c release, similarly as in caspase-9–proficient cells. Interestingly, despite these alterations, the cells retained ΔΨM. Furthermore, processing and enzyme activity of caspase-2 were not observed in the absence of caspase-9. Reconstitution of caspase-9 expression restored not only apoptosis but also the loss of ΔΨMand caspase-2 activity. Thus, we provide genetic evidence that caspase-9 is indispensable for drug-induced apoptosis in cancer cells. Moreover, loss of ΔΨMcan be functionally separated from cytochrome c release. Caspase-9 is not only required for ΔΨMloss but also for caspase-2 activation, suggesting that these two events are downstream of the apoptosome.


2009 ◽  
Vol 423 (3) ◽  
pp. 381-387 ◽  
Author(s):  
Pablo M. Peixoto ◽  
Shin-Young Ryu ◽  
Agnes Bombrun ◽  
Bruno Antonsson ◽  
Kathleen W. Kinnally

MAC (mitochondrial apoptosis-induced channel) forms in the mitochondrial outer membrane and unleashes cytochrome c to orchestrate the execution of the cell. MAC opening is the commitment step of intrinsic apoptosis. Hence closure of MAC may prevent apoptosis. Compounds that blocked the release of fluorescein from liposomes by recombinant Bax were tested for their ability to directly close MAC and suppress apoptosis in FL5.12 cells. Low doses of these compounds (IC50 values ranged from 19 to 966 nM) irreversibly closed MAC. These compounds also blocked cytochrome c release and halted the onset of apoptotic markers normally induced by IL-3 (interleukin-3) deprivation or staurosporine. Our results reveal the tight link among MAC activity, cytochrome c release and apoptotic death, and indicate this mitochondrial channel is a promising therapeutic target.


2001 ◽  
Vol 29 (6) ◽  
pp. 684-688 ◽  
Author(s):  
M. Schuler ◽  
D. R. Green

Cellular stresses, such as growth factor deprivation, DNA damage or oncogene expression, lead to stabilization and activation of the p53 tumour suppressor protein. Depending on the cellular context, this results in one of two different outcomes: cell cycle arrest or apoptotic cell death. Cell death induced through the p53 pathway is executed by the caspase proteinases, which, by cleaving their substrates, lead to the characteristic apoptotic phenotype. Caspase activation by p53 occurs through the release of apoptogenic factors from the mitochondria, including cytochrome c and Smac/DIABLO. Released cytochrome c allows the formation of a high-molecular weight complex, the apoptosome, which consists of the adapter protein Apaf-1 and caspase 9, which is activated following recruitment into the apoptosome. Active caspase 9 then cleaves and activates the effector caspases, such as caspases-3 and -7, which execute the death program. Released Smac/DIABLO facilitates caspase activation through repression of the IAP caspase inhibitor proteins. The release of mitochondrial apoptogenic factors is regulated by the pro- and anti-apoptotic Bcl-2 family proteins, which either induce or prevent the permeabilization of the outer mitochondrial membrane. The mechanism by which p53 signals to the Bcl-2 family proteins is unclear. It was shown that some of the pro-apoptotic family members, such as Bax, Noxa or PUMA, are transcriptional targets of p53. In addition, transcription-independent, pro-apoptotic activities of p53 have been described. The elucidation of the p53-dependent pathway, resulting in mitochondrial outer membrane permeabilization through the pro-apoptotic Bcl-2 family proteins, is a key to unveiling the mechanism of stress-induced apoptosis.


2004 ◽  
Vol 378 (1) ◽  
pp. 213-217 ◽  
Author(s):  
Vladimir GOGVADZE ◽  
John D. ROBERTSON ◽  
Mari ENOKSSON ◽  
Boris ZHIVOTOVSKY ◽  
Sten ORRENIUS

The mechanisms regulating mitochondrial outer-membrane permeabilization and the release of cytochrome c during apoptosis remain controversial. In the present study, we show in an in vitro model system that the release of cytochrome c may occur via moderate modulation of mitochondrial volume, irrespective of the mechanism leading to the mitochondrial swelling. In contrast with mitochondrial permeability transition-dependent release of cytochrome c, in the present study mitochondria remain intact and functionally active.


Sign in / Sign up

Export Citation Format

Share Document