scholarly journals Ultra-Homogeneous B0 field for High-Field Body Magnetic Resonance Imaging with Unified Shim-RF Coils

Author(s):  
Hsin-Jung Yang ◽  
Fardad Serry ◽  
Peng Hu ◽  
Zhaoyang Fan ◽  
Hyunsuk Shim ◽  
...  

Abstract High-field magnetic resonance imaging (MRI, 3.0T and above) offers numerous advantages for imaging the human body over lower-field strengths. However, it suffers from unwanted fast spatially-varying main (B0 ) fields caused by the susceptibility mismatch at the tissue interfaces. When this is combined with the anatomical complexity of the human body, undesirable image artifacts can become damaging as they can compromise potential image contrasts, limit the use of accelerated imaging, and interfere with clinical interpretation. Consequently, these limitations restrict the effective utilization of high-field body MRI and emphasize the need for a major improvement in B0 field homogeneity to take full advantage of the ever increased B0 field. Here we introduce a Unified shim-RF Coil (UNIC) to overcome this existing bottleneck by transcending the conventional low-efficiency, distantly located B0 shim coils. UNIC allows a shim array to be freely allotted and seamlessly integrated into a standard surface RF coil, thus maximizing both the performance of RF receive sensitivity and effective B0 shimming. We demonstrate the capacity of the UNIC approach through detailed characterization of the coil design, prototyping a body coil integrating the UNIC features, and conducting in-vivo imaging of deep organs adjacent to the lung. Our studies provide evidence that UNIC enables homogeneous B0 fields in the liver and the heart, where strong image artifacts are known to occur, and hence facilitate the acquisition of unprecedented image quality in a clinical 3.0T scanner. Further, UNIC’s design is practical as it overcomes one of the most, if not the most, critical limitations of the state-of-the-art high-field MRI with minimal changes to the current MRI hardware architecture. Accordingly, the proposed technique offers opportunities for major advancements in noninvasive imaging of deep organs with high-field imaging in a way it has not been possible thus far.

1988 ◽  
Vol 7 (1) ◽  
pp. 11-22 ◽  
Author(s):  
J. B. Ra ◽  
S. K. Hilal ◽  
C. H. Oh ◽  
I. K. Mun

Author(s):  
JC Lau ◽  
J DeKraker ◽  
KW MacDougall ◽  
H Joswig ◽  
AG Parrent ◽  
...  

Background: The hippocampus can be divided longitudinally into the head, body, and tail; and unfolded medial-to-laterally into the subiculum, cornu ammonis (CA) sectors, and the dentate gyrus. Ultra-high field (≥ 7 Tesla; 7T) magnetic resonance imaging (MRI) enables submillimetric visualization of these hippocampal substructures which could be valuable for surgical targeting. Here, we assess the feasibility of using 7T MRI in conjunction with a novel computational unfolding method for image-based stereotactic targeting of hippocampal substructures. Methods: 53 patients with drug-resistant epilepsy were identified undergoing first-time implantation of the hippocampus. An image processing pipeline was created for computationally transforming post-operative electrode contact locations into our hippocampal coordinate system. Results: Of 178 implanted hippocampal electrodes (88 left; 49.4%), 25 (14.0%) were predominantly in the subiculum, 85 (47.8%) were in CA1, 23 (12.9%) were in CA2, 18 (10.1%) were in CA3/CA4, and 27 (15.2%) were in dentate gyrus. Along the longitudinal axis, hippocampal electrodes were most commonly implanted in the body (92; 51.7%) followed by the head (86; 48.3%). Conclusions: 7T MRI enables high-resolution anatomical imaging on the submillimeter scale in in vivo subjects. Here, we demonstrate the utility of 7T imaging for identifying the relative location of SEEG electrode implantations within hippocampal substructures for the invasive investigation of epilepsy.


Author(s):  
Ruiqing Ni

Amyloid-beta plays an important role in the pathogenesis of Alzheimer’s disease. Aberrant amyloid-beta and tau accumulation induce neuroinflammation, cerebrovascular alterations, synaptic deficits, functional deficits, and neurodegeneration, leading to cognitive impairment. Animal models recapitulating the amyloid-beta pathology such as transgenic, knock-in mouse and rat models have facilitated the understanding of disease mechanisms and development of therapeutics targeting at amyloid-beta. There is a rapid advance in high-field MR in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences such as diffusion tensor imaging, arterial spin labelling, resting-state functional MRI, anatomical MRI, MR spectroscopy as well as contrast agents have been developed for the applications in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole brain field-of-view. MRI have been utilized to visualize non-invasively the amyloid-beta deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, cerebrovascular and glymphatic system in animal models of amyloidosis. Many of the readouts are translational in clinical MRI in the brain of patients with Alzheimer’s disease. In this review, we summarize the recent advance of using MRI for visualizing the pathophysiology in amyloidosis animal model. We discuss the outstanding challenges in brain imaging using MRI in small animal and propose future outlook in visualizing amyloid-beta-related alterations in brain of animal models.


2021 ◽  
Vol 587 ◽  
pp. 131-140
Author(s):  
Elisabet Gómez-González ◽  
Carlos Caro ◽  
Diego Martínez-Gutiérrez ◽  
María L. García-Martín ◽  
Manuel Ocaña ◽  
...  

NeuroImage ◽  
2019 ◽  
Vol 185 ◽  
pp. 27-34 ◽  
Author(s):  
Emma Sprooten ◽  
Rafael O'Halloran ◽  
Juliane Dinse ◽  
Won Hee Lee ◽  
Dominik Andreas Moser ◽  
...  

2008 ◽  
Vol 27 (4) ◽  
pp. 854-859 ◽  
Author(s):  
Roland Krug ◽  
Julio Carballido-Gamio ◽  
Suchandrima Banerjee ◽  
Andrew J. Burghardt ◽  
Thomas M. Link ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document