scholarly journals Estimation of Energy Expenditure of Nordic Walking: A Crossover Trial

2020 ◽  
Author(s):  
Sora Baek ◽  
Yuncheol Ha

Abstract Background: Nordic walking (NW) requires more energy compared with conventional walking (W). However, the metabolic equation for NW has not been reported. Therefore, this study aimed to characterize responses in oxygen uptake (V̇O2), minute ventilation (V̇E), heart rate (HR), systolic blood pressure (SBP), and surface electromyography (sEMG) of the upper and lower limb muscles during NW and W and to develop a metabolic equation for energy expenditure (E) of NW.Methods: Fifty healthy young men constituted our sample (aged 23.7 ± 3.0 years). Two randomly assigned walking tests (NW and W) on a treadmill at a predetermined stepwise incremental walking speed (3–5 km·h-1) and grade (0%–7%). The V̇O2, V̇E, HR, and SBP were measured. The sEMG signals of the three upper limb muscles and three lower limb muscles in their right body were recorded. Linear regression analysis was used to draw estimation of EE during W and NW.Results: V̇O2 (+15.8%), V̇E (+17.0%), RR (+18.2%), HR (+8.4%), and SBP (+7.7%) were higher in NW than in W. NW resulted in increased muscle activity in all of the upper limb muscles (P<.05). In the lower limb, sEMG activities in two of the three lower limb muscles were increased in NW than in W only during level walking (P<.05). EE during W and NW was estimated as follows: EW = 4.4 + 0.09 × speed + 1.20 × speed × grade; ENW = 6.1 + 0.09 × speed + 1.19 × speed × grade.Conclusion: NW showed higher work intensity than W, with an oxygen consumption difference of 1.7 mL·kg-1·min-1. The coefficients were not different between the two walking methods. NW involved more muscles of the upper body than W.

Author(s):  
Sora Baek ◽  
Yuncheol Ha

Abstract Background Nordic walking (NW) requires more energy compared with conventional walking (W). However, the metabolic equation for NW has not been reported. Therefore, this study aimed to characterize responses in oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography of the upper and lower limb muscles during NW and W and develop a metabolic equation for energy expenditure (E, mL·kg− 1·min− 1) of NW. Methods This study was performed in a randomized, controlled, crossover design to test the energy expenditure during NW and W. Fifteen healthy young men were enrolled (aged 23.7 ± 3.0 years). All participants performed two randomly ordered walking tests (NW and W) on a treadmill at a predetermined stepwise incremental walking speed (3–5 km·h− 1) and grade (0–7%). The oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography signals of the three upper limb muscles and three lower limb muscles in their right body were recorded and compared between NW and W using paired-t test. Multiple linear regression analysis was used to draw estimation of E during W and NW. Results Oxygen uptake (+ 15.8%), minute ventilation (+ 17.0%), heart rate (+ 8.4%), and systolic blood pressure (+ 7.7%) were higher in NW than in W (P < .05). NW resulted in increased muscle activity in all of the upper limb muscles (P < .05). In the lower limb, surface electromyography activities in two of the three lower limb muscles were increased in NW than in W only during level walking (P < .05). Energy expenditure during W and NW was estimated as follows: ENW = 6.1 + 0.09 × speed + 1.19 × speed × grade and EW = 4.4 + 0.09 × speed + 1.20 × speed × grade. Conclusion NW showed higher work intensity than W, with an oxygen consumption difference of 1.7 mL·kg− 1·min− 1. The coefficients were not different between the two walking methods. NW involved more muscles of the upper body than W.


2020 ◽  
Author(s):  
Sora Baek ◽  
Yuncheol Ha

Abstract Background: Nordic walking (NW) requires more energy compared with conventional walking (W). However, the metabolic equation for NW has not been reported. Therefore, this study aimed to characterize responses in oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography of the upper and lower limb muscles during NW and W and develop a metabolic equation for energy expenditure (E, mL·kg-1·min-1) of NW.Methods: This study was performed in a randomized, controlled, crossover design to test the energy expenditure during NW and W. Fifteen healthy young men were enrolled (aged 23.7 ± 3.0 years). All participants performed two randomly ordered walking tests (NW and W) on a treadmill at a predetermined stepwise incremental walking speed (3–5 km·h-1) and grade (0%–7%). The oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography signals of the three upper limb muscles and three lower limb muscles in their right body were recorded and compared between NW and W using paired-t test. Multiple linear regression analysis was used to draw estimation of E during W and NW.Results: Oxygen uptake (+15.8%), minute ventilation (+17.0%), heart rate (+8.4%), and systolic blood pressure (+7.7%) were higher in NW than in W (P<.05). NW resulted in increased muscle activity in all of the upper limb muscles (P<.05). In the lower limb, surface electromyography activities in two of the three lower limb muscles were increased in NW than in W only during level walking (P<.05). Energy expenditure during W and NW was estimated as follows: ENW = 6.1 + 0.09 × speed + 1.19 × speed × grade and EW = 4.4 + 0.09 × speed + 1.20 × speed × grade.Conclusion: NW showed higher work intensity than W, with an oxygen consumption difference of 1.7 mL·kg-1·min-1. The coefficients were not different between the two walking methods. NW involved more muscles of the upper body than W.


2021 ◽  
Author(s):  
Sora Baek ◽  
Yuncheol Ha

Abstract Background: Nordic walking (NW) requires more energy compared with conventional walking (W). However, the metabolic equation for NW has not been reported. Therefore, this study aimed to characterize responses in oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography of the upper and lower limb muscles during NW and W and develop a metabolic equation for energy expenditure (E, mL·kg-1·min-1) of NW.Methods: This study was performed in a randomized, controlled, crossover design to test the energy expenditure during NW and W. Fifteen healthy young men were enrolled (aged 23.7 ± 3.0 years). All participants performed two randomly ordered walking tests (NW and W) on a treadmill at a predetermined stepwise incremental walking speed (3–5 km·h-1) and grade (0%–7%). The oxygen uptake, minute ventilation, heart rate, systolic blood pressure, and surface electromyography signals of the three upper limb muscles and three lower limb muscles in their right body were recorded and compared between NW and W using paired-t test. Multiple linear regression analysis was used to draw estimation of E during W and NW.Results: Oxygen uptake (+15.8%), minute ventilation (+17.0%), heart rate (+8.4%), and systolic blood pressure (+7.7%) were higher in NW than in W (P<.05). NW resulted in increased muscle activity in all of the upper limb muscles (P<.05). In the lower limb, surface electromyography activities in two of the three lower limb muscles were increased in NW than in W only during level walking (P<.05). Energy expenditure during W and NW was estimated as follows: ENW = 6.1 + 0.09 × speed + 1.19 × speed × grade and EW = 4.4 + 0.09 × speed + 1.20 × speed × grade.Conclusion: NW showed higher work intensity than W, with an oxygen consumption difference of 1.7 mL·kg-1·min-1. The coefficients were not different between the two walking methods. NW involved more muscles of the upper body than W.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Rasha M Ibrahim ◽  
Haitham M Hamdy ◽  
Amr A Mohammed ◽  
Ahmed M Elsadek ◽  
Ahmed M Bassiouny ◽  
...  

Abstract Background Limb-girdle muscular dystrophies (LGMDs) are a clinically and genetically heterogeneous group of disorders characterized by progressive muscle weakness and degenerative muscle changes. Studies have shown that ultrasound can be useful both for diagnosis and follow-up of LGMDs patients. Objectives This study aims to measure the sensitivity and the specificity of muscle ultrasound in assessment of suspected limb girdle muscular dystrophy patients. Subjects and Methods This cross-sectional descriptive study was conducted on Fifty-five patients with suspected LGMD from neuromuscular unit, myology clinic, Ain Shams University hospitals and eight healthy subjects. Age was above 2 years. Both sexes were included in the study. They underwent real-time B-mode ultrasonography performed with using Logiq p9 General Electric ultrasound machine and General Electric 7-11.5 MHZ linear array ultrasound probe. All ultrasound images have been obtained and scored by a single examiner and muscle echo intensity was visually graded semiquantitative according to Heckmatt's scale. The examiner was blinded to the muscle biopsy results and clinical evaluations. Results Statistical analysis revealed that the diagnostic performance of muscle US (Heckmatt’s score) in LGMD is most sensitive when calculated in all examined upper limb and lower limb muscles, followed by lower limb muscles alone. US of upper limb was found to be the least sensitive. Conclusions Muscle ultrasound is a practical and reproducible and valid tool that can be used in assessment of suspected LGMD patients.


1997 ◽  
Vol 77 (6) ◽  
pp. 3401-3405 ◽  
Author(s):  
Stephan Salenius ◽  
Karin Portin ◽  
Matti Kajola ◽  
Riitta Salmelin ◽  
Riitta Hari

Salenius, Stephan, Karin Portin, Matti Kajola, Riitta Salmelin, and Riitta Hari. Cortical control of human motoneuron firing during isometric contraction. J. Neurophysiol. 77: 3401–3405, 1997. We recorded whole scalp magnetoencephalographic (MEG) signals simultaneously with the surface electromyogram from upper and lower limb muscles of six healthy right-handed adults during voluntary isometric contraction. The 15- to 33-Hz MEG signals, originating from the anterior bank of the central sulcus, i.e., the primary motor cortex, were coherent with motor unit firing in all subjects and for all muscles. The coherent cortical rhythms originated in the hand motor area for upper limb muscles (1st dorsal interosseus, extensor indicis proprius, and biceps brachii) and close to the foot area for lower limb muscles (flexor hallucis brevis). The sites of origin corresponding to different upper limb muscles did not differ significantly. The cortical signals preceded motor unit firing by 12–53 ms. The lags were shortest for the biceps brachii and increased systematically with increasing corticomuscular distance. We suggest that the motor cortex drives the spinal motoneuronal pool during sustained contractions, with the observed cortical rhythmic activity influencing the timing of efferent commands. The cortical rhythms could be related to motor binding, but the rhythmic output may also serve to optimize motor cortex output during isometric contractions.


Spinal Cord ◽  
2012 ◽  
Vol 50 (11) ◽  
pp. 822-826 ◽  
Author(s):  
A Zafeiridis ◽  
A V Vasiliadis ◽  
A Doumas ◽  
N Galanis ◽  
T Christoforidis ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Marie-Hélène Milot ◽  
Sylvie Nadeau ◽  
Denis Gravel ◽  
Daniel Bourbonnais

Background. Limited improvement in gait performance has been noted after training despite a significant increase in strength of the affected lower-limb muscles after stroke. A mismatch between the training program and the requirements of gait could explain this finding. Objective. To compare the impact of a training program, matching the requirements of the muscle groups involved in the energy generation of gait, to a control intervention, on gait performance and strength. Methods. 30 individuals with chronic stroke were randomly assigned into two groups (n = 15), each training three times/week for six weeks. The experimental group trained the affected plantarflexors, hip flexors, and extensors, while the control group trained the upper-limb muscles. Baseline and posttraining values of gait speed, positive power (muscles’ concentric action during gait), and strength were retained and compared between groups. Results. After training, both groups showed a similar and significant increase in gait speed, positive power of the hip muscles, and plantarflexors strength. Conclusion. A training program targeting the lower-limb muscles involved in the energy generation of gait did not lead to a greater improvement in gait performance and strength than a training program of the upper-limb muscles. Attending the training sessions might have been a sufficient stimulus to generate gains in the control group.


2008 ◽  
Vol 105 (5) ◽  
pp. 1527-1532 ◽  
Author(s):  
T. Oya ◽  
B. W. Hoffman ◽  
A. G. Cresswell

This study investigated corticospinal-evoked responses in lower limb muscles during voluntary contractions at varying strengths. Similar investigations have been made on upper limb muscles, where evoked responses have been shown to increase up to ∼50% of maximal force and then decline. We elicited motor-evoked potentials (MEPs) and cervicomedullary motor-evoked potentials (CMEPs) in the soleus (Sol) and medial gastrocnemius (MG) muscles using magnetic stimulation over the motor cortex and cervicomedullary junction during voluntary plantar flexions with the torque ranging from 0 to 100% of a maximal voluntary contraction. Differences between the MEP and CMEP were also investigated to assess whether any changes were occurring at the cortical or spinal levels. In both Sol and MG, MEP and CMEP amplitudes [normalized to maximal M wave (Mmax)] showed an increase, followed by a plateau, over the greater part of the contraction range with responses increasing from ∼0.2 to ∼6% of Mmax for Sol and from ∼0.3 to ∼10% of Mmax for MG. Because both MEPs and CMEPs changed in a similar manner, the observed increase and lack of decrease at high force levels are likely related to underlying changes occurring at the spinal level. The evoked responses in the Sol and MG increase over a greater range of contraction strengths than for upper limb muscles, probably due to differences in the pattern of motor unit recruitment and rate coding for these muscles and the strength of the corticospinal input.


Sign in / Sign up

Export Citation Format

Share Document