scholarly journals Individualized flow-controlled ventilation compared to best clinical practice pressure-controlled ventilation: a prospective randomized porcine study.

2020 ◽  
Author(s):  
Patrick Spraider ◽  
Judith Martini ◽  
Julia Abram ◽  
Gabriel Putzer ◽  
Bernhard Glodny ◽  
...  

Abstract Background: Flow-controlled ventilation is a novel ventilation method which allows to individualize ventilation according to dynamic lung mechanic limits based on direct tracheal pressure measurement at a stable constant gas flow during inspiration and expiration. The aim of this porcine study was to compare individualized flow-controlled ventilation (FCV) and current guideline-conform pressure-controlled ventilation (PCV) in long-term ventilation.Methods: Anesthetized pigs were ventilated with either FCV or PCV over a period of ten hours with a fixed FiO2 of 0.3. FCV settings were individualized by compliance-guided positive end-expiratory pressure (PEEP) and peak pressure (Ppeak) titration. Flow was adjusted to maintain normocapnia and the inspiration to expiration ratio (I:E ratio) was set at 1:1. PCV was performed with a PEEP of 5 cm H2O and Ppeak was set to achieve a tidal volume (VT) of 7 ml/kg. The respiratory rate was adjusted to maintain normocapnia and the I:E ratio was set at 1:1.5. Repeated measurements during observation period were assessed by linear mixed-effects model.Results: In FCV (n=6) respiratory minute volume was significantly reduced (6.0 vs 12.7, MD -6.8 (-8.2 to -5.4) l/min; p<0.001) as compared to PCV (n=6). Oxygenation was improved in the FCV group (paO2 119.8 vs 96.6, MD 23.2 (9.0 to 37.5) torr; 15.97 vs 12.87, MD 3.10 (1.19 to 5.00) kPa; p=0.010) and CO2 removal was more efficient (paCO2 40.1 vs 44.9, MD -4.7 (-7.4 to -2.0) torr; 5.35 vs 5.98, MD -0.63 (-0.99 to -0.27) kPa; p=0.006). Ppeak and driving pressure were comparable in both groups, whereas PEEP was significantly lower in FCV (p=0.002). Computed tomography revealed a significant reduction in non-aerated lung tissue in individualized FCV (p=0.026) and no significant difference in overdistended lung tissue, although a significantly higher VT was applied (8.2 vs 7.6, MD 0.7 (0.2 to 1.2) ml/kg; p=0.025).Conclusion: Our long-term ventilation study demonstrates the applicability of a compliance-guided individualization of FCV settings, which resulted in significantly improved gas exchange and lung tissue aeration without signs of overinflation as compared to best clinical practice PCV.

Critical Care ◽  
2020 ◽  
Vol 24 (1) ◽  
Author(s):  
Patrick Spraider ◽  
Judith Martini ◽  
Julia Abram ◽  
Gabriel Putzer ◽  
Bernhard Glodny ◽  
...  

Abstract Background Flow-controlled ventilation is a novel ventilation method which allows to individualize ventilation according to dynamic lung mechanic limits based on direct tracheal pressure measurement at a stable constant gas flow during inspiration and expiration. The aim of this porcine study was to compare individualized flow-controlled ventilation (FCV) and current guideline-conform pressure-controlled ventilation (PCV) in long-term ventilation. Methods Anesthetized pigs were ventilated with either FCV or PCV over a period of 10 h with a fixed FiO2 of 0.3. FCV settings were individualized by compliance-guided positive end-expiratory pressure (PEEP) and peak pressure (Ppeak) titration. Flow was adjusted to maintain normocapnia and the inspiration to expiration ratio (I:E ratio) was set at 1:1. PCV was performed with a PEEP of 5 cm H2O and Ppeak was set to achieve a tidal volume (VT) of 7 ml/kg. The respiratory rate was adjusted to maintain normocapnia and the I:E ratio was set at 1:1.5. Repeated measurements during observation period were assessed by linear mixed-effects model. Results In FCV (n = 6), respiratory minute volume was significantly reduced (6.0 vs 12.7, MD − 6.8 (− 8.2 to − 5.4) l/min; p < 0.001) as compared to PCV (n = 6). Oxygenation was improved in the FCV group (paO2 119.8 vs 96.6, MD 23.2 (9.0 to 37.5) Torr; 15.97 vs 12.87, MD 3.10 (1.19 to 5.00) kPa; p = 0.010) and CO2 removal was more efficient (paCO2 40.1 vs 44.9, MD − 4.7 (− 7.4 to − 2.0) Torr; 5.35 vs 5.98, MD − 0.63 (− 0.99 to − 0.27) kPa; p = 0.006). Ppeak and driving pressure were comparable in both groups, whereas PEEP was significantly lower in FCV (p = 0.002). Computed tomography revealed a significant reduction in non-aerated lung tissue in individualized FCV (p = 0.026) and no significant difference in overdistended lung tissue, although a significantly higher VT was applied (8.2 vs 7.6, MD 0.7 (0.2 to 1.2) ml/kg; p = 0.025). Conclusion Our long-term ventilation study demonstrates the applicability of a compliance-guided individualization of FCV settings, which resulted in significantly improved gas exchange and lung tissue aeration without signs of overinflation as compared to best clinical practice PCV.


2020 ◽  
Author(s):  
Patrick Spraider ◽  
Judith Martini ◽  
Julia Abram ◽  
Gabriel Putzer ◽  
Bernhard Glodny ◽  
...  

Abstract Background: Flow-controlled ventilation is a novel ventilation method which allows to individualize ventilation according to dynamic lung mechanic limits based on direct tracheal pressure measurement at a stable constant gas flow during inspiration and expiration. The aim of this porcine study was to compare individualized flow-controlled ventilation (FCV) and current guideline-conform pressure-controlled ventilation (PCV) in long-term ventilation.Methods: Anesthetized pigs were ventilated with either FCV or PCV over a period of ten hours with a fixed FiO2 of 0.3. FCV settings were individualized by compliance-guided positive end-expiratory pressure (PEEP) and peak pressure (Ppeak) titration. Flow was adjusted to maintain normocapnia and the inspiration to expiration ratio (I:E ratio) was set at 1:1. PCV was performed with a PEEP of 5 cm H2O and Ppeak was set to achieve a tidal volume (VT) of 7 ml/kg. The respiratory rate was adjusted to maintain normocapnia and the I:E ratio was set at 1:1.5. Repeated measurements during observation period were assessed by linear mixed-effects model.Results: In FCV (n=6) respiratory minute volume was significantly reduced (6.0 vs 12.7, MD -6.8 (-8.2 to -5.4) l/min; p<0.001) as compared to PCV (n=6). Oxygenation was improved in the FCV group (paO2 119.8 vs 96.6, MD 23.2 (9.0 to 37.5) torr; 15.97 vs 12.87, MD 3.10 (1.19 to 5.00) kPa; p=0.010) and CO2 removal was more efficient (paCO2 40.1 vs 44.9, MD -4.7 (-7.4 to -2.0) torr; 5.35 vs 5.98, MD -0.63 (-0.99 to -0.27) kPa; p=0.006). Ppeak and driving pressure were comparable in both groups, whereas PEEP was significantly lower in FCV (p=0.002). Computed tomography revealed a significant reduction in non-aerated lung tissue in individualized FCV (p=0.026) and no significant difference in overdistended lung tissue, although a significantly higher VT was applied (8.2 vs 7.6, MD 0.7 (0.2 to 1.2) ml/kg; p=0.025).Conclusion: Our long-term ventilation study demonstrates the applicability of a compliance-guided individualization of FCV settings, which resulted in significantly improved gas exchange and lung tissue aeration without signs of overinflation as compared to best clinical practice PCV.


2017 ◽  
Vol 49 (6) ◽  
pp. 1602193 ◽  
Author(s):  
Maria Paola Arellano-Maric ◽  
Cesare Gregoretti ◽  
Marieke Duiverman ◽  
Wolfram Windisch

The technology underlying the development of novel ventilatory modes for long-term noninvasive ventilation of patients with chronic hypercapnia is continuously evolving. Volume-targeted pressure-controlled ventilation is a hybrid ventilation mode designed to combine the advantages of conventional ventilation modes, while avoiding their drawbacks. However, manufacturers have created different names and have patented algorithms and set-up variables, which can result in confusion for physicians and respiratory therapists. In addition, clear evidence for the superiority of this novel mode has not yet been established. These factors have most likely hindered more widespread use of this mode in clinical practice. The current review presents the rationale, working principles, characteristics and set-up recommendations associated with volume-targeted modes. In addition, it summarises the clinical and laboratory studies that have challenged this mode.


2021 ◽  
Vol 10 (6) ◽  
pp. 1276
Author(s):  
Volker Schick ◽  
Fabian Dusse ◽  
Ronny Eckardt ◽  
Steffen Kerkhoff ◽  
Simone Commotio ◽  
...  

For perioperative mechanical ventilation under general anesthesia, modern respirators aim at combining the benefits of pressure-controlled ventilation (PCV) and volume-controlled ventilation (VCV) in modes typically named “volume-guaranteed” or “volume-targeted” pressure-controlled ventilation (PCV-VG). This systematic review and meta-analysis tested the hypothesis that PCV-VG modes of ventilation could be beneficial in terms of improved airway pressures (Ppeak, Pplateau, Pmean), dynamic compliance (Cdyn), or arterial blood gases (PaO2, PaCO2) in adults undergoing elective surgery under general anesthesia. Three major medical electronic databases were searched with predefined search strategies and publications were systematically evaluated according to the Cochrane Review Methods. Continuous variables were tested for mean differences using the inverse variance method and 95% confidence intervals (CI) were calculated. Based on the assumption that intervention effects across studies were not identical, a random effects model was chosen. Assessment for heterogeneity was performed with the χ2 test and the I2 statistic. As primary endpoints, Ppeak, Pplateau, Pmean, Cdyn, PaO2, and PaCO2 were evaluated. Of the 725 publications identified, 17 finally met eligibility criteria, with a total of 929 patients recruited. Under supine two-lung ventilation, PCV-VG resulted in significantly reduced Ppeak (15 studies) and Pplateau (9 studies) as well as higher Cdyn (9 studies), compared with VCV [random effects models; Ppeak: CI −3.26 to −1.47; p < 0.001; I2 = 82%; Pplateau: −3.12 to −0.12; p = 0.03; I2 = 90%; Cdyn: CI 3.42 to 8.65; p < 0.001; I2 = 90%]. For one-lung ventilation (8 studies), PCV-VG allowed for significantly lower Ppeak and higher PaO2 compared with VCV. In Trendelenburg position (5 studies), this effect was significant for Ppeak only. This systematic review and meta-analysis demonstrates that volume-targeting, pressure-controlled ventilation modes may provide benefits with respect to the improved airway dynamics in two- and one-lung ventilation, and improved oxygenation in one-lung ventilation in adults undergoing elective surgery.


2011 ◽  
Vol 110 (5) ◽  
pp. 1374-1383 ◽  
Author(s):  
Gaetano Perchiazzi ◽  
Christian Rylander ◽  
Antonio Vena ◽  
Savino Derosa ◽  
Debora Polieri ◽  
...  

During positive-pressure ventilation parenchymal deformation can be assessed as strain (volume increase above functional residual capacity) in response to stress (transpulmonary pressure). The aim of this study was to explore the relationship between stress and strain on the regional level using computed tomography in anesthetized healthy pigs in two postures and two patterns of breathing. Airway opening and esophageal pressures were used to calculate stress; change of gas content as assessed from computed tomography was used to calculate strain. Static stress-strain curves and dynamic strain-time curves were constructed, the latter during the inspiratory phase of volume and pressure-controlled ventilation, both in supine and prone position. The lung was divided into nondependent, intermediate, dependent, and central regions: their curves were modeled by exponential regression and examined for statistically significant differences. In all the examined regions, there were strong but different exponential relations between stress and strain. During mechanical ventilation, the end-inspiratory strain was higher in the dependent than in the nondependent regions. No differences between volume- and pressure-controlled ventilation were found. However, during volume control ventilation, prone positioning decreased the end-inspiratory strain of dependent regions and increased it in nondependent regions, resulting in reduced strain gradient. Strain is inhomogeneously distributed within the healthy lung. Prone positioning attenuates differences between dependent and nondependent regions. The regional effects of ventilatory mode and body positioning should be further explored in patients with acute lung injury.


2013 ◽  
Vol 70 (1) ◽  
pp. 9-15
Author(s):  
Maja Surbatovic ◽  
Zoran Vesic ◽  
Dragan Djordjevic ◽  
Sonja Radakovic ◽  
Snjezana Zeba ◽  
...  

Background/Aim: Laparoscopic cholecystectomy is considered to be the gold standard for laparoscopic surgical procedures. In ASA III patients with concomitant respiratory diseases, however, creation of pneumoperitoneum and the position of patients during surgery exert additional negative effect on intraoperative respiratory function, thus making a higher challenge for the anesthesiologist than for the surgeon. The aim of this study was to compare the effect of intermittent positive pressure ventilation (IPPV) and pressure controlled ventilation (PCV) during general anesthesia on respiratory function in ASA III patients submitted to laparoscopic cholecystectomy. Methods. The study included 60 patients randomized into two groups depending on the mode of ventilation: IPPV or PCV. Respiratory volume (VT), peak inspiratory pressure (PIP), compliance (C), end-tidal CO2 pressure (PETCO2), oxygen saturation (SpO2), partial pressures of O2, CO2 (PaO2 and PaCO2) and pH of arterial blood were recorded within four time intervals. Results. There were no statistically significant differences in VT, SpO2, PaO2, PaCO2 and pH values neither within nor between the two groups. In time interval t1 there were no statistically significant differences in PIP, C, PETCO2 values between the IPPV and the PCV group. But, in the next three time intervals there was a difference in PIP, C, and PETCO2 values between the two groups which ranged from statistically significant to highly significant; PIP was lower, C and PETCO2 were higher in the PCV group. Conclusion. Pressure controlled ventilation better maintains stability regarding intraoperative ventilatory parameters in ASA III patients with concomitant respiratory diseases during laparoscopic cholecystectomy.


1993 ◽  
Vol 21 (8) ◽  
pp. 1143-1148 ◽  
Author(s):  
JAVIER MUÑOZ ◽  
JOSE EUGENIO GUERRERO ◽  
JOSE LUIS ESCALANTE ◽  
RICARDO PALOMINO ◽  
BRAULIO DE LA CALLE

Sign in / Sign up

Export Citation Format

Share Document