scholarly journals ER-mitochondria contacts underline cannabinoid regulation of calcium signaling in astrocytes

Author(s):  
Roman Serrat ◽  
Ana Covelo ◽  
Vladimir Kouskoff ◽  
Sebastien Delcasso ◽  
Andrea Ruiz-Calvo ◽  
...  

Abstract Intracellular calcium signaling underlies the astroglial control of brain functions. However, the cellular mechanisms regulating calcium handling by astrocytes are far from being understood. Mitochondria-endoplasmic reticulum contacts (MERCs) are key determinants of calcium dynamics, but their functional impact on astroglial regulation of brain information processing is currently unexplored. Here we show that the activation of astrocyte mitochondrial-associated CB1 receptors (mtCB1) regulates MERCs-dependent intracellular calcium signaling, thereby determining the synaptic functions of these cells. In vitro and in vivo stimulation of mtCB1 receptors promotes calcium transfer from the endoplasmic reticulum to mitochondria through a specific molecular cascade, involving AKT signaling, IPR3 receptors and different components of the mitochondrial calcium uniporter complex (MCU). Physiologically, mtCB1-dependent mitochondrial calcium uptake determines the dynamics of cytosolic calcium events in astrocytes upon endocannabinoid mobilization. Accordingly, electrophysiological recordings in hippocampal slices showed that astrocyte-specific mtCB1 receptors exclusion or dominant negative MCU expression blocks lateral synaptic potentiation, through which astrocytes integrate the activity of distant synapses. Altogether, these data reveal a cellular endocannabinoid link between astroglial MERCs and the regulation of brain network functions.

2020 ◽  
Author(s):  
Roman Serrat ◽  
Ana Covelo ◽  
Vladimir Kouskoff ◽  
Sebastien Delcasso ◽  
Andrea Ruiz ◽  
...  

SummaryIntracellular calcium signaling underlies the astroglial control of synaptic transmission and plasticity. Mitochondria-endoplasmic reticulum contacts (MERCs) are key determinants of calcium dynamics, but their functional impact on astroglial regulation of brain information processing is currently unexplored. We found that the activation of astrocyte mitochondrial-associated CB1 receptors (mtCB1) determines MERCs-dependent intracellular calcium signaling and synaptic integration. The stimulation of mtCB1 receptors promotes calcium transfer from the endoplasmic reticulum to mitochondria through specific mechanisms regulating the activity of the mitochondrial calcium uniporter (MCU) channel. Physiologically, mtCB1-dependent mitochondrial calcium uptake determines the precise dynamics of cytosolic calcium events in astrocytes upon endocannabinoid mobilization. Accordingly, electrophysiological recordings in hippocampal slices showed that genetic exclusion of mtCB1 receptors or specific astroglial MCU inhibition blocks lateral synaptic potentiation, a key example of astrocyte-dependent integration of distant synapses activity. Altogether, these data reveal an unforeseen link between astroglial MERCs and the regulation of brain network functions.


Author(s):  
FRANK CH. MOOREN ◽  
ANJA LECHTERMANN ◽  
ALBERT FROMME ◽  
LOTHAR THORWESTEN ◽  
KLAUS V??LKER

2012 ◽  
Vol 198 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Ilya Bezprozvanny

Mutations in presenilins (PS), transmembrane proteins encoding the catalytic subunit of γ-secretase, result in familial Alzheimer’s disease (FAD). Several studies have identified lysosomal defects in cells lacking PS or expressing FAD-associated PS mutations, which have been previously attributed to a function for PS in lysosomal acidification. Now, in this issue, Coen et al. (2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201201076) provide a series of results that challenge this idea and propose instead that presenilins play a role in calcium-mediated lysosomal fusion.


2005 ◽  
Vol 80 (1) ◽  
pp. 135-145 ◽  
Author(s):  
Clayton S. Spada ◽  
Achim H.-P. Krauss ◽  
David F. Woodward ◽  
June Chen ◽  
Charles E. Protzman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document