thrombospondin 4
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 30)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
Vol 35 (1) ◽  
pp. 66-77
Author(s):  
Neslihan Düzenli ◽  
Sibel Ülker ◽  
Gülgün Şengül ◽  
Buse Kayhan ◽  
Aytül Önal

Author(s):  
Mariliis Klaas ◽  
Kristina Mäemets-Allas ◽  
Elizabeth Heinmäe ◽  
Heli Lagus ◽  
Claudia Griselda Cárdenas-León ◽  
...  

Thrombospondin-4 (THBS4) is a non-structural extracellular matrix molecule associated with tissue regeneration and a variety of pathological processes characterized by increased cell proliferation and migration. However, the mechanisms of how THBS4 regulates cell behavior as well as the pathways contributing to its effects have remained largely unexplored. In the present study we investigated the role of THBS4 in skin regeneration both in vitro and in vivo. We found that THBS4 expression was upregulated in the dermal compartment of healing skin wounds in humans as well as in mice. Application of recombinant THBS4 protein promoted cutaneous wound healing in mice and selectively stimulated migration of primary fibroblasts as well as proliferation of keratinocytes in vitro. By using a combined proteotranscriptomic pathway analysis approach we discovered that β-catenin acted as a hub for THBS4-dependent cell signaling and likely plays a key role in promoting its downstream effects. Our results suggest that THBS4 is an important contributor to wound healing and its incorporation into novel wound healing therapies may be a promising strategy for treatment of cutaneous wounds.


Bone ◽  
2021 ◽  
pp. 115999
Author(s):  
E. Andrés Sastre ◽  
K. Maly ◽  
M. Zhu ◽  
J. Witte-Bouma ◽  
D. Trompet ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
E Soltanmohammadi ◽  
Y Zhang ◽  
I Chatzistamou ◽  
H. Kiaris

Abstract Background Genes that belong to the same network are frequently co-expressed, but collectively, how the coordination of the whole transcriptome is perturbed during aging remains unclear. To explore this, we calculated the correlation of each gene in the transcriptome with every other, in the brain of young and older outbred deer mice (P. leucopus and P. maniculatus). Results In about 25 % of the genes, coordination was inversed during aging. Gene Ontology analysis in both species, for the genes that exhibited inverse transcriptomic coordination during aging pointed to alterations in the perception of smell, a known impairment occurring during aging. In P. leucopus, alterations in genes related to cholesterol metabolism were also identified. Among the genes that exhibited the most pronounced inversion in their coordination profiles during aging was THBS4, that encodes for thrombospondin-4, a protein that was recently identified as rejuvenation factor in mice. Relatively to its breadth, abolishment of coordination was more prominent in the long-living P. leucopus than in P. maniculatus but in the latter, the intensity of de-coordination was higher. Conclusions There sults suggest that aging is associated with more stringent retention of expression profiles for some genes and more abrupt changes in others, while more subtle but widespread changes in gene expression appear protective. Our findings shed light in the mode of the transcriptional changes occurring in the brain during aging and suggest that strategies aiming to broader but more modest changes in gene expression may be preferrable to correct aging-associated deregulation in gene expression.


2021 ◽  
Vol 22 (5) ◽  
pp. 2242
Author(s):  
Kathrin Maly ◽  
Enrique Andres Sastre ◽  
Eric Farrell ◽  
Andrea Meurer ◽  
Frank Zaucke

Osteoarthritis (OA) is a slow-progressing joint disease, leading to the degradation and remodeling of the cartilage extracellular matrix (ECM). The usually quiescent chondrocytes become reactivated and accumulate in cell clusters, become hypertrophic, and intensively produce not only degrading enzymes, but also ECM proteins, like the cartilage oligomeric matrix protein (COMP) and thrombospondin-4 (TSP-4). To date, the functional roles of these newly synthesized proteins in articular cartilage are still elusive. Therefore, we analyzed the involvement of both proteins in OA specific processes in in vitro studies, using porcine chondrocytes, isolated from femoral condyles. The effect of COMP and TSP-4 on chondrocyte migration was investigated in transwell assays and their potential to modulate the chondrocyte phenotype, protein synthesis and matrix formation by immunofluorescence staining and immunoblot. Our results demonstrate that COMP could attract chondrocytes and may contribute to a repopulation of damaged cartilage areas, while TSP-4 did not affect this process. In contrast, both proteins similarly promoted the synthesis and matrix formation of collagen II, IX, XII and proteoglycans, but inhibited that of collagen I and X, resulting in a stabilized chondrocyte phenotype. These data suggest that COMP and TSP-4 activate mechanisms to protect and repair the ECM in articular cartilage.


Author(s):  
Santoshi Muppala ◽  
Roy Xiao ◽  
Jasmine Gajeton ◽  
Irene Krukovets ◽  
Dmitriy Verbovetskiy ◽  
...  

2020 ◽  
Vol 34 (9) ◽  
pp. 11529-11545
Author(s):  
Santoshi Muppala ◽  
Mohammed Tanjimur Rahman ◽  
Irene Krukovets ◽  
Dmitriy Verbovetskiy ◽  
Elzbieta Pluskota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document