scholarly journals GIS-Based Study To Develop Landslide Susceptibility Zonation Map Of District Mandi, Himachal Pradesh

Author(s):  
Sachin Verma ◽  
Vidya Sagar Khanduri

Abstract Rising Incidents of landslide at district Mandi is issue of concern in Himachal Pradesh. Every year many people losses their life and property in these landslide event. This study is conducted with aim to preparation of landslide susceptibility zonation map of district Mandi using method of frequency ratio. Causative factor of landslide involved in preparation of Landslide susceptibility zonation map is Lithology, Slope, Drainage density, Aspect and Land use land cover. Slope, Drainage density, Aspect map are extracted through digital elevation model. Source of Digital elevation model used here is based on SRTM data whereas lithology map is based on data of geological survey of India. Land use land cover map is extracted by images of Landsat 8 satellite. Total of 52 existing landslides are used to model final map. LSZ map show 40.42% area is falling under medium susceptibility class, 34.5 % under low and 25.07% is under high susceptibility class which cover tehsils Mandi, Chachyot, Thunag and some part of Padhar, Aut and Bali Chowki. Further to validate these result areas under curve (AUC) method is use which give prediction rate of 76.06%.

Author(s):  
Mohamed Elhag ◽  
Silvena Boteva

Land Cover monitoring is an essential task for a better understanding of the ecosystem’s dynamicity and complexity. The availability of Remote Sensing data improved the Land Use Land Cover mapping as it is routine work in ecosystem management. The complexity of the Mediterranean ecosystems involves a complexity of the surrounding environmental factors. An attempt to quantitatively investigate the interdependencies between land covers and affected environmental factors was conducted in Nisos Elafonisos to represent diverse and fragile coastal Mediterranean ecosystems. Sentinel-2 (MSI) sensor and ASTER Digital Elevation Model (DEM) data were used to classify the LULC as well as to draw different vegetation conditions over the designated study area. DEM derivatives were conducted and incorporated. The developed methodology is intended to assess the land use land cover for different practices under the present environmental condition of Nisos Elafonisos. Supervised classification resulted in six different land cover clusters and was tested against three different environmental clusters. The findings of the current research pointed out that the environmental variables are independent and there is a vertical distribution of the vegetation according to altitude.


2021 ◽  
Vol 5 (3) ◽  
pp. 1475-1491
Author(s):  
Gisele Marilha Pereira Reginatto ◽  
Regiane Mara Sbroglia ◽  
Camilo Andrade Carreño ◽  
Bianca Rodrigues Schvartz ◽  
Pâmela Betiatto ◽  
...  

In translational landslide susceptibility analysis with SHALSTAB (Shallow Landsliding Stability Model), the resolution of the digital elevation model (DSM) is determinant for defining the type of mapping generated (preliminary or not). In this study, in order to verify the influence of the SDM scale on the SHALSTAB stability classes, susceptibility maps were prepared at two scales: 1:50,000 and 1:10,000. The study area was the Garcia River watershed, belonging to the municipality of Blumenau, Santa Catarina, affected by landslides in the 2008 catastrophe, which enabled the validation of the simulations with the scars mapped in the field. Thus, the influence of scale on the distribution of the model's stability classes and on its performance was verified. SHALSTAB performed better at the 1:10,000 scale, predicting 70% of the instabilities in a percentage of unstable area approximately three times smaller than at the 1,50,000 scale.


Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 360 ◽  
Author(s):  
Sansar Raj ◽  
Thimmaiah

Landslides are one of the most damaging geological hazards in mountainous regions such as the Himalayas. The Himalayan region is, tectonically, the most active region in the world that is highly vulnerable to landslides and associated hazards. Landslide susceptibility mapping (LSM) is a useful tool for understanding the probability of the spatial distribution of future landslide regions. In this research, the landslide inventory datasets were collected during the field study of the Kullu valley in July 2018, and 149 landslide locations were collected as global positioning system (GPS) points. The present study evaluates the LSM using three different spatial resolution of the digital elevation model (DEM) derived from three different sources. The data-driven traditional frequency ratio (FR) model was used for this study. The FR model was used for this research to assess the impact of the different spatial resolution of DEMs on the LSM. DEM data was derived from Advanced Land Observing Satellite-1 (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) ALOS-PALSAR for 12.5 m, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global for 30 m, and the Shuttle Radar Topography Mission (SRTM) for 90 m. As an input, we used eight landslide conditioning factors based on the study area and topographic features of the Kullu valley in the Himalayas. The ASTER-Global 30m DEM showed higher accuracy of 0.910 compared to 0.839 for 12.5 m and 0.824 for 90 m DEM resolution. This study shows that that 30 m resolution is better suited for LSM for the Kullu valley region in the Himalayas. The LSM can be used for mitigation and future planning for spatial planners and developmental authorities in the region.


2020 ◽  
Vol 1 (1) ◽  
pp. 25-30
Author(s):  
Winda Lestari Turnip

The topography of the Tampahan area which tends to be steep and dominated by tuff lithology can result in a landslide. The intensity of landslides and the resulting losses can be reduced by the analysis of landslide-prone areas in Tampahan. The administration of the area is located in Toba Samosir Regency, North Sumatra Province which is included in the Toba Caldera Region. Analysis of landslide-prone areas is carried out with five parameters namely slope, land use, morphological elevation, lithology, and rainfall. The data processed in this analysis comes from field data, DEMNas (National Digital Elevation Model), and other spatial data. Classification of each parameter and weighting based on literature is away in the analysis of landslide-prone areas of Tampahan. Then do each parameter overlay to get the value of landslide-prone and distinguished based on the calculation of the landslide class interval. The results are divided into five classes that are prone to landslides, namely classes not prone (1-1,8), rather prone (1,8-2,6), quite prone (2,6-3,4), prone (3,4-4,2), and very prone (4,2-5). Based on the analysis that has been done, some areas are very prone to landslides in the southeast while areas that are not prone to landslides are in the southwest of the study area. Therefore, landslide-prone studies are categorized as high landslides with almost 60% coverage of the study area.


Author(s):  
U.S. Ibrahim ◽  
T.T. Youngu ◽  
B. Swafiyudeen ◽  
A.Z. Abubakar ◽  
A.K. Zainabu ◽  
...  

The increased flood incidences experienced all over the world due to climate change dynamics call for a concerted effort towards forestalling future hazards. This study thus, identified the areas that are susceptibility to floods in parts of the Makera district of the Kaduna South Local Government Area in Nigeria using geospatial techniques. Geographic Information System (GIS) was used to produce thematic layers of the factors contributing to flooding (elevation, slope, drainage density, rainfall, land use/land cover); and a multi-criteria evaluation particularly the “Analytical Hierarchical process” (AHP) was applied to determine the locations at risk. The various thematic layers were integrated into the weighted overlay tool in the ArcGIS 10.3 environment to generate the final susceptibility map. The overlay tool was also used to determine the elements at risk of flood in the study area. The results show that the areas that were highly susceptible to flood constituted about 39% of the study area, while moderate and low vulnerable areas constituted about 26% and 35%, respectively. The result of the multi-criteria analysis revealed that land use/land cover (0.601) was the factor that contributed the most to flooding in the study area based on the criteria weights followed by rainfall (0.470), drainage density (0.326), elevation (0.144), and slope (0.099), respectively. The study recommends that authorities concerned should ensure strict adherence to land use planning act, such that floodplains are avoided during development of any type.


2018 ◽  
Vol 15 ◽  
pp. 45-56 ◽  
Author(s):  
Him Lal Shrestha ◽  
Mahesh Poudel

Landslide hazard zonation map is prepared to assist planners to implement mitigation measures so that further damage and loss can be minimized. In this study, post 25 April 2015 earthquake remote sensing data were used to prepare landslide inventory. Landsat images after the earthquake were downloaded from the National Aeronautics and Space Administration (NASA) website and processed using ArcGIS, ERDAS imagine and Analytical Hierarchy Process (AHP) as an extension in ArcGIS. The study was carried out in Gorkha district as this was the epicenter of the main earthquake of 25 April 2015 and consequently was highly affected by earthquake triggered landslide. The digital imagery was processed to analyze land use/land cover type. Geological features were analyzed using the criteria like color, tone, topography, stream drainage, etc. Primary topographic features like slope, aspect, elevation, etc. were generated from Digital Elevation Model (DEM). Seismological data (magnitude and epicenter) were obtained from Department of Seismology. For Landslide Susceptibility Zonation (LSZ) different thematic maps like Land Use and Land Cover (LULC) map, slope map, aspect map, lithological map, buffer map (distance from road and river/water source), soil map, and seismological map were assigned relative weights on the ordinal scale to obtain Landslide Susceptibility Index (LSI). Threshold values were selected according to breaks in LSI frequency and a LSZ map was prepared which shows very low, low, moderate, high, very high hazard zones in Gorkha district.


Author(s):  
D. Gesch ◽  
M. Oimoen ◽  
J. Danielson ◽  
D. Meyer

The ASTER Global Digital Elevation Model Version 3 (GDEM v3) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009 and GDEM Version 2 (v2) in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of −1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters), the mean error (bias) does appear to be affected by land cover type, ranging from −2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2) and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.


Sign in / Sign up

Export Citation Format

Share Document