scholarly journals VALIDATION OF THE ASTER GLOBAL DIGITAL ELEVATION MODEL VERSION 3 OVER THE CONTERMINOUS UNITED STATES

Author(s):  
D. Gesch ◽  
M. Oimoen ◽  
J. Danielson ◽  
D. Meyer

The ASTER Global Digital Elevation Model Version 3 (GDEM v3) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009 and GDEM Version 2 (v2) in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of −1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters), the mean error (bias) does appear to be affected by land cover type, ranging from −2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2) and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.

Author(s):  
D. Gesch ◽  
M. Oimoen ◽  
J. Danielson ◽  
D. Meyer

The ASTER Global Digital Elevation Model Version 3 (GDEM v3) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009 and GDEM Version 2 (v2) in 2011. The absolute vertical accuracy of GDEM v3 was calculated by comparison with more than 23,000 independent reference geodetic ground control points from the U.S. National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v3 is 8.52 meters. This compares with the RMSE of 8.68 meters for GDEM v2. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v3 mean error of −1.20 meters reflects an overall negative bias in GDEM v3. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover type to provide insight into how GDEM v3 performs in various land surface conditions. While the RMSE varies little across cover types (6.92 to 9.25 meters), the mean error (bias) does appear to be affected by land cover type, ranging from −2.99 to +4.16 meters across 14 land cover classes. These results indicate that in areas where built or natural aboveground features are present, GDEM v3 is measuring elevations above the ground level, a condition noted in assessments of previous GDEM versions (v1 and v2) and an expected condition given the type of stereo-optical image data collected by ASTER. GDEM v3 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v3 has elevations that are higher in the canopy than SRTM. The overall validation effort also included an evaluation of the GDEM v3 water mask. In general, the number of distinct water polygons in GDEM v3 is much lower than the number in a reference land cover dataset, but the total areas compare much more closely.


2011 ◽  
Vol 1 (4) ◽  
pp. 305-312 ◽  
Author(s):  
Y. Wang

Precise computation of the direct and indirect topographic effects of Helmert's 2nd method of condensation using SRTM30 digital elevation modelThe direct topographic effect (DTE) and indirect topographic effect (ITE) of Helmert's 2nd method of condensation are computed using the digital elevation model (DEM) SRTM30 in 30 arc-seconds globally. The computations assume a constant density of the topographic masses. Closed formulas are used in the inner zone of half degree, and Nagy's formulas are used in the innermost column to treat the singularity of integrals. To speed up the computations, 1-dimensional fast Fourier transform (1D FFT) is applied in outer zone computations. The computation accuracy is limited to 0.1 mGal and 0.1cm for the direct and indirect effect, respectively.The mean value and standard deviation of the DTE are -0.8 and ±7.6 mGal over land areas. The extreme value -274.3 mGal is located at latitude -13.579° and longitude 289.496°, at the height of 1426 meter in the Andes Mountains. The ITE is negative everywhere and has its minimum of -235.9 cm at the peak of Himalayas (8685 meter). The standard deviation and mean value over land areas are ±15.6 cm and -6.4 cm, respectively. Because the Stokes kernel does not contain the zero and first degree spherical harmonics, the mean value of the ITE can't be compensated through the remove-restore procedure under the Stokes-Helmert scheme, and careful treatment of the mean value in the ITE is required.


2019 ◽  
Vol 1 ◽  
pp. 1-2
Author(s):  
Andrea Lopes Iescheck ◽  
Patricia Andréia Paiola Scalco

<p><strong>Abstract.</strong> This work is part of a research project that aims at the automatic determination of knickpoints and the assessment of morphometric and hypsometric parameters of Mirim Lagoon Hydrographic Basin, using Shuttle Radar Topography Mission digital elevation model (SRTM-DEM) and spatial analyses.</p><p>The analysis of geomorphologic systems is done using computational treatment of data obtained by remote sensing, especially those obtained by SRTM. These data permit the elaboration of a topographic model for the Earth surface and provide a base for studies in several units of geomorphologic analyses (geomorphologic systems), such as hydrographic basins.</p><p>The most usual technique for derivation of relief morphologic attributes is based on digital elevation models (DEMs) and digital hydrographic nets. Computational routines are applied on those data for acquisition of the hydrography and drainage anomalies. The DEMs and the hydrographic nets must have either morphologic or hydrologic consistency to validate the results obtained in the morphometric analyses.</p><p>More specifically, this study aims at describing the method and related results regarding the validation of the vertical accuracy of SRTM-DEM through a kinematic positioning based on the Global Navigation Satellite System (GNSS), in the Mirim Lagoon Hydrographic Basin region. Mirim Lagoon Hydrographic Basin is as cross-border basin located on the Atlantic coast of South America, and covers an area of 58,407.78&amp;thinsp;km<sup>2</sup>, where 47% of this area is in Brazil and 53% in Uruguay.</p><p>Several studies deal with the validation of Digital Elevation Models (DEMs) and SRTM data using different GNSS surveying methods and receivers. The innovation of this work is the methodology developed to achieve the suitable accuracy for the control points coordinates to validate the SRTM-DEM of Mirim Lagoon Hydrographic Basin. The study used the kinematic relative positioning method with a recording rate of 1 second and without reference stations for post-processing with the precise point positioning (PPP) method. This methodology allowed covering a large area with reference stations being very far from the surveyed region and with different geodetic reference systems (two countries).</p><p>The methodology entails the GNSS data acquisition and post-processing, the transformation from geometric heights into orthometric heights, the SRTM-DEM mosaic, the extraction of homologous points in the SRTM-DEM and the statistical analyses for validating the model.</p><p>The study used a GNSS receiver of dual-frequency with recording rate of 1 second to collect a total of 275,916 points with 3D coordinates. Those points were post-processed using the PPP method with the Canadian Spatial Reference System &amp;ndash; Precise Point Positioning (CSRS-PPP), and the ellipsoidal height was converted into orthometric height through the software INTPT geoid. During this work, we used the geopotential model (EGM96) to transform height differences between two countries, Brazil and Uruguay.</p><p>In order to obtain the SRTM-DEM we used 15 SRTM images, version 3, band C, with a spatial resolution of 1 arcsecond (approximately 30&amp;thinsp;m). These images were individually processed to obtain the Digital Elevation Model Hydrologically Consistent (DEMHC) and to treat the inconsistencies. Afterwards, we created a mosaic with the 15 images.</p><p>In the statistical analysis we examined the magnitude of absolute errors in the SRTM data. These errors were named discrepancies between the SRTM heights and the heights of GNSS survey points. After the post-processing and the heights conversion, the GNSS survey points were considered accurate and used as a reference for SRTM-DEM validation. The goal of the statistical analysis was to verify if the absolute vertical precision of the DEM data exceeds 16&amp;thinsp;m, according to the precision specifications of the DEM SRTM.</p><p>Results showed that the vertical mean absolute error of the SRTM-DEM vary from 0.07&amp;thinsp;m to &amp;plusmn;&amp;thinsp;9.9&amp;thinsp;m with average of &amp;minus;0.28&amp;thinsp;m. This vertical accuracy is better than the absolute vertical accuracy value of &amp;plusmn;&amp;thinsp;16&amp;thinsp;m published in the SRTM data specification and validates the SRTM-DEM. Besides that, even considering different slopes and different heights the statistics showed that SRTM-DEM could be validated, in spite of the results for lower and flat area were more accurate than the ones for a higher area with high slope.</p>


2012 ◽  
Vol 4 (1) ◽  
pp. 129-142 ◽  
Author(s):  
A. J. Cook ◽  
T. Murray ◽  
A. Luckman ◽  
D. G. Vaughan ◽  
N. E. Barrand

Abstract. A high resolution surface topography Digital Elevation Model (DEM) is required to underpin studies of the complex glacier system on the Antarctic Peninsula. A complete DEM with better than 200 m pixel size and high positional and vertical accuracy would enable mapping of all significant glacial basins and provide a dataset for glacier morphology analyses. No currently available DEM meets these specifications. We present a new 100-m DEM of the Antarctic Peninsula (63–70° S), based on ASTER Global Digital Elevation Model (GDEM) data. The raw GDEM products are of high-quality on the rugged terrain and coastal-regions of the Antarctic Peninsula and have good geospatial accuracy, but they also contain large errors on ice-covered terrain and we seek to minimise these artefacts. Conventional data correction techniques do not work so we have developed a method that significantly improves the dataset, smoothing the erroneous regions and hence creating a DEM with a pixel size of 100 m that will be suitable for many glaciological applications. We evaluate the new DEM using ICESat-derived elevations, and perform horizontal and vertical accuracy assessments based on GPS positions, SPOT-5 DEMs and the Landsat Image Mosaic of Antarctica (LIMA) imagery. The new DEM has a mean elevation difference of −4 m (&amp;pm; 25 m RMSE) from ICESat (compared to −13 m mean and &amp;pm;97 m RMSE for the original ASTER GDEM), and a horizontal error of less than 2 pixels, although elevation accuracies are lower on mountain peaks and steep-sided slopes. The correction method significantly reduces errors on low relief slopes and therefore the DEM can be regarded as suitable for topographical studies such as measuring the geometry and ice flow properties of glaciers on the Antarctic Peninsula. The DEM is available for download from the NSIDC website: http://nsidc.org/data/nsidc-0516.html (doi:10.5060/D47P8W9D).


2008 ◽  
Vol 39 (5-6) ◽  
pp. 359-368 ◽  
Author(s):  
Timo Korkalainen ◽  
Ari Laurén ◽  
Harri Koivusalo ◽  
Teemu Kokkonen

Peatland drainage enhances tree growth, changes catchment hydrology and increases export of nutrients and suspended solids to water bodies. In this study, impacts of peatland drainage on the properties of water flow paths in terrestrial parts of catchments were assessed in terms of slope, elevation, length and soil type. Three study catchments (area 31.8–153.5 km2) were delineated using a 25 m × 25 m digital elevation model (DEM). Typical water flow paths were calculated for each catchment to characterize the mean elevation above the receiving water body as a function of distance along water flow paths. The resulting two-dimensional (2D) profile also allowed calculations of horizontally distributed properties of catchments as a function of distance to the water body. Peatland drainage decreased the length and elevation of the typical water flow path, and increased the area near water bodies. Increasing drainage from 10.7% to 55.4% of the total catchment area increased the area residing close to a water body (no farther than 25 m) from 17.1% to 60.7%. This area estimate is useful for assessing the costs of water protection, arising from restricting forestry operations in the vicinity of water bodies.


Sign in / Sign up

Export Citation Format

Share Document