scholarly journals Relationships Between Empirical Damage and Direct/Indirect Costs for the Assessment of Seismic Loss Scenarios

Author(s):  
Marco Di Ludovico ◽  
Giuseppina De MArtino ◽  
Andrea Prota ◽  
Gaetano Manfredi ◽  
Mauro Dolce

Abstract The definition of relationships between damage and losses is a crucial aspect for the prediction of seismic effects and the development of reliable models to define risk maps, loss scenarios and mitigation strategies. The paper focuses on the analysis of post-earthquake empirical data to define relationships between buildings’ damage expressed as usability rating or as global damage state and the associated costs for repair (i.e. direct costs) or for population assistance (i.e. a part of total indirect costs). The analysis refers to the data collected on residential buildings damaged by 2009 L'Aquila earthquake. For different usability rating or damage states, the paper presents the costs expressed in terms of percentage with respect to the reference unit cost of a new building (%Cr and %Ca for repair and population assistance costs, respectively). In particular, the costs analysis refers to undamaged, lightly or severely damaged buildings classified according to usability rating (i.e. A, B-C or E according to Italian classification) or to five different global Damage States (DSs). DSs comply with European Macroseismic Scale (EMS-98) and derive from literature available matrices properly defined to convert empirical damage to structural and non-structural components into building global damage. The %Cr probability density functions and relevant statistics derive from the analysis of actual data of post-earthquake reconstruction process, while, to determine those related to %Ca, a deep analysis of population assistance types, person/month assistance cost for each assistance form, and a methodology to associate such costs to each building are herein presented and discussed. Finally the paper presents a relationship calibrated on empirical data to directly correlate repair costs on a building with assistance costs to their occupants.The relationships between empirical damage and direct and indirect costs herein presented are of paramount importance because they allow reliable loss scenarios to be defined by simply using literature fragility curves (defined according to empirical or mechanical approaches) aimed at evaluating the probability of exceeding different usability rating or damage states of existing buildings.

Author(s):  
Marco Di Ludovico ◽  
Giuseppina De Martino ◽  
Andrea Prota ◽  
Gaetano Manfredi ◽  
Mauro Dolce

AbstractThe definition of relationships between damage and losses is a crucial aspect for the prediction of seismic effects and the development of reliable models to define risk maps, loss scenarios and mitigation strategies. The paper focuses on the analysis of post-earthquake empirical data to define relationships between buildings’ damage expressed as usability rating or as global damage state and the associated costs for repair (i.e. direct costs) or for population assistance (i.e. a part of total indirect costs). The analysis refers to the data collected on residential buildings damaged by 2009 L'Aquila earthquake. For different usability rating or damage states, the paper presents the costs expressed in terms of percentage with respect to the reference unit cost of a new building (%Cr and %Ca for repair and population assistance costs, respectively). In particular, the costs analysis refers to undamaged, lightly or severely damaged buildings classified according to usability rating (i.e. A, B-C or E according to Italian classification) or to five different global Damage States (DSs). DSs comply with European Macroseismic Scale (EMS-98) and derive from literature available matrices properly defined to convert empirical damage to structural and non-structural components into building global damage. The %Cr probability density functions and relevant statistics derive from the analysis of actual data of post-earthquake reconstruction process, while, to determine those related to %Ca, a deep analysis of population assistance types, person/month assistance cost for each assistance form, and a methodology to associate such costs to each building are herein presented and discussed. Finally, the paper presents a relationship calibrated on empirical data to directly correlate repair costs on a building with assistance costs to their occupants. The relationships between empirical damage and direct and indirect costs herein presented are of paramount importance because they allow reliable loss scenarios to be defined by simply using literature fragility curves (defined according to empirical or mechanical approaches) aimed at evaluating the probability of exceeding different usability rating or damage states of existing buildings.


Author(s):  
Marco Donà ◽  
Pietro Carpanese ◽  
Veronica Follador ◽  
Luca Sbrogiò ◽  
Francesca da Porto

Abstract Seismic risk assessment at the territorial level is now widely recognised as essential for countries with intense seismic activity, such as Italy. Academia is called to give its contribution in order to synergically deepen the knowledge about the various components of this risk, starting from the complex evaluation of vulnerability of the built heritage. In line with this, a mechanics-based seismic fragility model for Italian residential masonry buildings was developed and presented in this paper. This model is based on the classification of the building stock in macro-typologies, defined by age of construction and number of storeys, which being information available at national level, allow simulating damage scenarios and carrying out risk analyses on a territorial scale. The model is developed on the fragility of over 500 buildings, sampled according to national representativeness criteria and analysed through the Vulnus_4.0 software. The calculated fragility functions were extended on the basis of a reference model available in the literature, which provides generic fragilities for the EMS98 vulnerability classes, thus obtaining a fragility model defined on the five EMS98 damage states. Lastly, to assess the reliability of the proposed model, this was used to simulate damage scenarios due to the 2009 L’Aquila earthquake. Overall, the comparison between model results and observed damage showed a good fit, proving the model effectiveness.


Author(s):  
Nina N. Serdar ◽  
Jelena R. Pejovic ◽  
Radenko Pejovic ◽  
Miloš Knežević

<p>It is of great importance that traffic network is still functioning in post- earthquake period, so that interventions in emergency situations are not delayed. Bridges are part of the traffic system that can be considered as critical for adequate post-earthquake response. Their seismic response often dominate the response and reliability of overall transportation system, so special attention should be given to risk assessment for these structures. In seismic vulnerability and risk assessment bridges are often classified as regular or irregular structures, dependant on their configuration. Curved bridges are considered as irregular and unexpected behaviour during seismic excitation is noticed in past earthquake events. Still there are an increasing number of these structures especially in densely populated urban areas since curved configuration is often suitable to accommodate complicated location conditions. In this paper special attention is given to seismic risk assessment of curved reinforce concrete bridges through fragility curves. Procedure for developing fragility curves is described as well as influence of radius curvature on their seismic vulnerability is investigated. Since vulnerability curves provide probability of exceedance of certain damage state, four damage states are considered: near collapse, significant damage, intermediate damage state, onset of damage and damage limitation. As much as possible these damage states are related to current European provisions. Radius of horizontal curvature is varied by changing subtended angle: 25 °, 45 ° and 90 °. Also one corresponding straight bridge is analysed. Nonlinear static procedure is used for developing of fragility curves. It was shown that probability of exceedance of certain damage states is increased as subtended angle is increased. Also it is determined that fragility of curved bridges can be related to fragility of straight counterparts what facilitates seismic evaluation of seismic vulnerability of curved bridges structures.</p>


2000 ◽  
Vol 16 (4) ◽  
pp. 801-815 ◽  
Author(s):  
Michael J. O'Rourke ◽  
Pak So

The study reported herein attempts to characterize the seismic behavior of cylindrical on-grade, steel liquid storage tanks subject to the ground shaking hazard. The behavior is quantified by fragility curves that resulted from an analysis of the reported performance of over 400 tanks in nine separate earthquake events. The damage states used herein to characterize damage (i.e., slight, moderate, etc.) are intended to mirror damage state descriptions in the HAZUS Earthquake Loss Estimation Methodology. The amount of ground shaking is quantified by the peak ground acceleration (PGA) at the site. The influence of the tank's height to diameter ratio, H/D, as well as the relative amount of stored contents, % Full, are investigated and were found to have had a significant effect upon tank seismic performance. Finally, the fragility curves developed herein are compared to corresponding relations currently available in the technical literature.


2015 ◽  
Vol 31 (3) ◽  
pp. 1337-1352 ◽  
Author(s):  
David Lallemant ◽  
Anne Kiremidjian

This study investigates methods for modeling the distribution of post-earthquake damage among categorical damage states. Specifically, it is demonstrated that the beta distribution is a good model for characterizing the complete probability distribution of damage states conditioned on ground-motion intensity. Based on extensive post-earthquake damage surveys following the 2010 earthquake in Haiti, the paper proposes the method-of-moments and maximum likelihood estimate-based formulations to fit a beta distribution model to grouped categorical damage data. The beta distribution model is further compared with one based on the binomial distribution, often used to estimate damage state distribution. The study demonstrates that the beta distribution results in little bias and variance in predictions of damage and loss. This model can be the basis for developing damage probability matrices, fragility curves, post-disaster damage estimations, risk assessments, and more.


Over the recent years the natural disaster especially due to the earthquake effect on buildings increases which causes loss of life and property in many places all over the world. The latest development leads to finding the direct losses and damage states of the buildings for various intensities of earthquake ground motions. In the present study, seismic vulnerability assessment was done for a medium rise building (G+5). The design peak ground acceleration of 0.16g and 0.36g were considered for the risk assessment. The nonlinear static pushover analysis was done to fine the performance point, spectral acceleration and corresponding spectral acceleration by Equivalent Linearization (EL) method given by Federal Emergency Management Agency (FEMA-440). The four damage states such as slight, moderate, extreme and collapse has been considered as per HAZUS-MR4. The seismic vulnerability in terms of fragility curves was developed to evaluate the damage probabilities based on HAZUS methodology. The discrete and cumulative damage probability was found for all the damage states of the building which shows the building at 0.16g experience slight damage whereas at 0.36g the moderate damage state equally becomes predominant.


Author(s):  
Konstantinos Bakalis ◽  
Dimitrios Vamvatsikos ◽  
Michalis Fragiadakis

A seismic fragility assessment procedure is developed for atmospheric steel liquid storage tanks. Appropriate system and component-level damage states are defined by identifying the failure modes that may occur during a strong ground motion. Special attention is paid to the elephant’s foot buckling failure mode, where the estimation of the associated capacity and demand requires thorough consideration within a probabilistic framework. A novel damage state is introduced to existing procedures with respect to the uncontrollable loss of containment scenario. Fragility curves are estimated by introducing both aleatory and epistemic sources of uncertainty, thus providing a comprehensive methodology for the seismic risk assessment of liquid storage tanks. The importance of dynamic buckling is acknowledged and the issue of non-sequential damage states is finally revealed.


Buildings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 122 ◽  
Author(s):  
Maria De Risi ◽  
Carlo Del Gaudio ◽  
Gerardo Verderame

The estimation of direct and indirect losses due to earthquakes is a key issue in the Performance Based Earthquake Engineering framework. In commonly adopted loss computation tools, no specific data related to masonry infill panels, widespread in moment-resisting-frame residential buildings, are available to perform a probabilistic assessment of losses. To fill this gap, specific fragility and loss functions have been recently proposed in the last years. To assess their validity and estimate the relevance of the repair costs due to infills after earthquakes with respect to the total reconstruction process, the present work analyses the Reinforced Concrete residential buildings with masonry infills struck by the 2009 L’Aquila (Italy) earthquake, focusing on the dataset of “lightly” damaged buildings, where only damage to masonry infills occurred. Based on available data related to these buildings, the observed damage scenario after L’Aquila earthquake is first obtained. The repair costs for infills are estimated given this damage scenario. The resulting estimated repair costs are then compared with the actual repair costs presented in the available literature. The percentage influence of infills on the total repair costs due to earthquakes for residential buildings is lastly computed, resulting on average equal to the fifty percent.


Author(s):  
S. Akkar

AbstractThis paper presents a novel approach to develop content fragility conditioned on building damage for contents used in residential buildings in Turkey. The approach combines the building damage state probabilities with the content damage probabilities conditioned on building damage states to develop the content fragilities. The paper first presents the procedure and then addresses the epistemic uncertainty in building and content fragilities to show their effects on the content vulnerability. The approach also accounts for the expert opinion differences in the content replacement cost ratios (consequence functions) as part of the epistemic uncertainty. Monte Carlo sampling is used to consider the epistemic uncertainty in each model component contributing to the content vulnerability. A sample case study is presented at the end of the paper to show the implementation of the developed content fragilities by calculating the average annual loss ratio (AALR) distribution of residential content loss over the mainland Turkey.


2017 ◽  
Vol 11 (04) ◽  
pp. 1750010 ◽  
Author(s):  
Hossein Pahlavan ◽  
Behzad Zakeri ◽  
Gholamreza Ghodrati Amiri

Bridge horizontal deck curvature and the prevalence of in-span hinges in multi-frame RC box-girder bridges have reinforced this class of bridge to response with unique dynamic behavior during seismic excitations. This paper assesses the impacts of 10 different retrofit strategies on the vulnerability of curved multi-frame RC box-girder bridges with multi-column bents based on nonlinear time history analyses in OpenSEES. Consistent with HAZUS-MH definitions, fragility curves corresponding to four damage states at the component and system levels are developed for various bridge deck radii. The results indicate that combinations of retrofit strategies should be used to enhance the desirable level of bridge performance. Moreover, the most effective retrofit strategy in reducing probable damage for a given intensity is dependent on the bridge deck radius and is a function of the damage state of interest.


Sign in / Sign up

Export Citation Format

Share Document