scholarly journals High-power density monolithic fuel cell stack

Author(s):  
Stéven Pirou ◽  
Belma Talic ◽  
Karen Brodersen ◽  
Anne Hauch ◽  
Henrik Frandsen ◽  
...  

Abstract The transportation sector is currently undergoing a technology shift from internal combustion engines to electric motors powered by batteries. However, their limited range and long charging times limit wide-spread adoption. Electrified transportation powered by solid oxide fuel cells (SOFCs) offer an attractive alternative especially for heavy freight and long-range transportation, as this technology can provide high-efficiency and flexible fuel choices. Thus far, the technology is mostly used for stationary applications owing to the high operating temperature, low volumetric and gravimetric power density, and poor robustness towards thermal cycling and mechanical vibrations of conventional ceramic-based cells. Here, we present a novel metal-based monolithic fuel cell design to overcome these issues. Highly cost-competitive and scalable manufacturing methods are employed for fabrication, and only a single heat treatment is required, as opposed to two or three for conventional SOFCs. The design is further optimised through three-dimensional multiphysics modelling, nanoparticle infiltration, and corrosion-mitigating treatments. The monolithic fuel cell shows exceptionally high power density (5.6 kW/L) revealing the vast potential of SOFC technology for transport applications.

2021 ◽  
Author(s):  
Steven Pirou ◽  
Belma Talic ◽  
Karen Brodersen ◽  
Anne Hauch ◽  
Henrik Frandsen ◽  
...  

Abstract The transportation sector is currently undergoing a technology shift from internal combustion engines to electric motors powered by batteries. However, their limited range and long charging times limit wide-spread adoption. Electrified transportation powered by solid oxide fuel cells (SOFCs) offer an attractive alternative especially for heavy freight and long-range transportation, as this technology can provide high-efficiency and flexible fuel choices. Thus far, the technology is mostly used for stationary applications owing to the high operating temperature, low volumetric and gravimetric power density, and poor robustness towards thermal cycling and mechanical vibrations of conventional ceramic-based cells. Here, we present a novel metal-based monolithic fuel cell design to overcome these issues. Highly cost-competitive and scalable manufacturing methods are employed for fabrication, and only a single heat treatment is required, as opposed to two or three for conventional SOFCs. The design is further optimised through three-dimensional multiphysics modelling, nanoparticle infiltration, and corrosion-mitigating treatments. The monolithic fuel cell shows exceptionally high power density (5.6 kW/L) and excellent thermal cycling robustness, revealing the vast potential of SOFC technology for transport applications.


Nanoscale ◽  
2016 ◽  
Vol 8 (6) ◽  
pp. 3539-3547 ◽  
Author(s):  
Hao Ren ◽  
He Tian ◽  
Cameron L. Gardner ◽  
Tian-Ling Ren ◽  
Junseok Chae

We report a miniaturized microbial fuel cell, integrated with a 3D free-standing graphene scaffold, delivering a record high power density of 11 220 W m−3.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rohith Mittapally ◽  
Byungjun Lee ◽  
Linxiao Zhu ◽  
Amin Reihani ◽  
Ju Won Lim ◽  
...  

AbstractThermophotovoltaic approaches that take advantage of near-field evanescent modes are being actively explored due to their potential for high-power density and high-efficiency energy conversion. However, progress towards functional near-field thermophotovoltaic devices has been limited by challenges in creating thermally robust planar emitters and photovoltaic cells designed for near-field thermal radiation. Here, we demonstrate record power densities of ~5 kW/m2 at an efficiency of 6.8%, where the efficiency of the system is defined as the ratio of the electrical power output of the PV cell to the radiative heat transfer from the emitter to the PV cell. This was accomplished by developing novel emitter devices that can sustain temperatures as high as 1270 K and positioning them into the near-field (<100 nm) of custom-fabricated InGaAs-based thin film photovoltaic cells. In addition to demonstrating efficient heat-to-electricity conversion at high power density, we report the performance of thermophotovoltaic devices across a range of emitter temperatures (~800 K–1270 K) and gap sizes (70 nm–7 µm). The methods and insights achieved in this work represent a critical step towards understanding the fundamental principles of harvesting thermal energy in the near-field.


2011 ◽  
Vol 4 (5) ◽  
pp. 052104 ◽  
Author(s):  
Di Liu ◽  
Yongqiang Ning ◽  
Yugang Zeng ◽  
Li Qin ◽  
Yun Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document