scholarly journals Gastrocnemius Medialis Contractile Behavior During Running Differs Between Simulated Lunar and Martian Gravities

Author(s):  
Charlotte Richter ◽  
Bjoern Braunstein ◽  
Benjamin Staeudle ◽  
Julia Attias ◽  
Alexander Suess ◽  
...  

Abstract The international partnership of space agencies has agreed to proceed forward to the Moon sustainably. Activities on the Lunar surface (0.16g) will allow crewmembers to advance the exploration skills needed when expanding human presence to Mars (0.38g). Whilst data from actual hypogravity activities are limited to the Apollo missions, simulation studies have indicated that ground reaction forces, mechanical work, muscle activation and joint angles decrease with declining gravity level. However, these alterations in locomotion biomechanics do not necessarily scale to gravity level, the reduction in gastrocnemius medialis activation even appears to level off around 0.2g, whilst muscle activation pattern remains similar. Thus, it is difficult to predict whether gastrocnemius medialis contractile behavior during running on Moon will basically be the same as on Mars. Therefore, this study investigated lower limb joint kinematics and gastrocnemius medialis behavior during running at 1g, simulated 0.38g and 0.16g on the vertical treadmill facility. The results reveal that hypogravity-induced alterations in joint kinematics and contractile behavior still persist between simulated running on Moon and Mars. This contrasts the idea of a ceiling effect and should be carefully considered when evaluating exercise prescriptions and the transferability of locomotion practiced in Lunar gravity to Martian gravity.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charlotte Richter ◽  
Bjoern Braunstein ◽  
Benjamin Staeudle ◽  
Julia Attias ◽  
Alexander Suess ◽  
...  

AbstractThe international partnership of space agencies has agreed to proceed forward to the Moon sustainably. Activities on the Lunar surface (0.16 g) will allow crewmembers to advance the exploration skills needed when expanding human presence to Mars (0.38 g). Whilst data from actual hypogravity activities are limited to the Apollo missions, simulation studies have indicated that ground reaction forces, mechanical work, muscle activation, and joint angles decrease with declining gravity level. However, these alterations in locomotion biomechanics do not necessarily scale to the gravity level, the reduction in gastrocnemius medialis activation even appears to level off around 0.2 g, while muscle activation pattern remains similar. Thus, it is difficult to predict whether gastrocnemius medialis contractile behavior during running on Moon will basically be the same as on Mars. Therefore, this study investigated lower limb joint kinematics and gastrocnemius medialis behavior during running at 1 g, simulated Martian gravity, and simulated Lunar gravity on the vertical treadmill facility. The results indicate that hypogravity-induced alterations in joint kinematics and contractile behavior still persist between simulated running on the Moon and Mars. This contrasts with the concept of a ceiling effect and should be carefully considered when evaluating exercise prescriptions and the transferability of locomotion practiced in Lunar gravity to Martian gravity.


2009 ◽  
Vol 38 (6) ◽  
pp. 754-761 ◽  
Author(s):  
BARBARA B. BOCKSTAHLER ◽  
ROLAND GESKY ◽  
MARION MUELLER ◽  
JOHANN G. THALHAMMER ◽  
CHRISTIAN PEHAM ◽  
...  

Author(s):  
Ritwik Rakshit ◽  
Yujiang Xiang ◽  
James Yang

This article presents an optimization formulation and experimental validation of a dynamic-joint-strength-based two-dimensional symmetric maximum weight-lifting simulation. Dynamic joint strength (the net moment capacity as a function of joint angle and angular velocity), as presented in the literature, is adopted in the optimization formulation to predict the symmetric maximum lifting weight and corresponding motion. Nineteen participants were recruited to perform a maximum-weight-box-lifting task in the laboratory, and kinetic and kinematic data including motion and ground reaction forces were collected using a motion capture system and force plates, respectively. For each individual, the predicted spine, shoulder, elbow, hip, knee, and ankle joint angles, as well as vertical and horizontal ground reaction force and box weight, were compared with the experimental data. Both root-mean-square error and Pearson’s correlation coefficient ( r) were used for the validation. The results show that the proposed two-dimensional optimization-based motion prediction formulation is able to accurately predict all joint angles, box weights, and vertical ground reaction forces, but not horizontal ground reaction forces.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Ross H. Miller ◽  
Graham E. Caldwell ◽  
Richard E. A. Van Emmerik ◽  
Brian R. Umberger ◽  
Joseph Hamill

The role of arm swing in running has been minimally described, and the contributions of arm motion to lower extremity joint kinematics and external force generation are unknown. These contributions may have implications in the design of musculoskeletal models for computer simulations of running, since previous models have usually not included articulating arm segments. 3D stance phase lower extremity joint angles and ground reaction forces (GRFs) were determined for seven subjects running normally, and running under two conditions of arm restraint. When arm swing was suppressed, the peak vertical GRF decreased by 10–13% bodyweight, and the peak lateral GRF increased by 4–6% bodyweight. Changes in peak joint angles on the order of 1–5 deg were observed for hip flexion, hip adduction, knee flexion, knee adduction, and ankle abduction. The effect sizes (ES) were small to moderate (ES<0.8) for most of the peak GRF differences, but large (ES>0.8) for most of the peak joint angle differences. These changes suggest that suppression of arm swing induces subtle but statistically significant changes in the kinetic and kinematic patterns of running. However, the salient features of the GRFs and the joint angles were present in all conditions, and arm swing did not introduce any major changes in the timing of these data, as indicated by cross correlations. The decision to include arm swing in a computer model will likely need to be made on a case-by-case basis, depending on the design of the study and the accuracy needed to answer the research question.


2011 ◽  
Vol 366 (1570) ◽  
pp. 1516-1529 ◽  
Author(s):  
Maarten F. Bobbert ◽  
L. J. Richard Casius

The purpose of this study was to understand how humans regulate their ‘leg stiffness’ in hopping, and to determine whether this regulation is intended to minimize energy expenditure. ‘Leg stiffness’ is the slope of the relationship between ground reaction force and displacement of the centre of mass (CM). Variations in leg stiffness were achieved in six subjects by having them hop at maximum and submaximum heights at a frequency of 1.7 Hz. Kinematics, ground reaction forces and electromyograms were measured. Leg stiffness decreased with hopping height, from 350 N m −1 kg −1 at 26 cm to 150 N m −1 kg −1 at 14 cm. Subjects reduced hopping height primarily by reducing the amplitude of muscle activation. Experimental results were reproduced with a model of the musculoskeletal system comprising four body segments and nine Hill-type muscles, with muscle stimulation STIM( t ) as only input. Correspondence between simulated hops and experimental hops was poor when STIM( t ) was optimized to minimize mechanical energy expenditure, but good when an objective function was used that penalized jerk of CM motion, suggesting that hopping subjects are not minimizing energy expenditure. Instead, we speculated, subjects are using a simple control strategy that results in smooth movements and a decrease in leg stiffness with hopping height.


2004 ◽  
Vol 20 (1) ◽  
pp. 38-50 ◽  
Author(s):  
Mark D. Tillman ◽  
Rachel M. Criss ◽  
Denis Brunt ◽  
Chris J. Hass

The purposes of this study were to analyze double-limb, dominant-limb, and nondominant-limb landings, each with a two-footed takeoff, in order to detect potential differences in muscle activity and ground reaction forces and to examine the possible influence of leg dominance on these parameters. Each of the three jump landing combinations was analyzed in 11 healthy female volleyball players (age 21 ± 3 yrs; height 171 ± 5 cm, mass 61.6 ± 5.5 kg, max. vertical jump height 28 ± 4 cm). Ground reaction forces under each limb and bilateral muscle activity of the vastus medialis, hamstrings, and lateral gastrocnemius muscles were synchronized and collected at 1,000 Hz. Normalized EMG amplitude and force platform data were averaged over five trials for each participant and analyzed using repeated-measures ANOVA. During the takeoff phase in jumps with one-footed landings, the non-landing limb loaded more than the landing limb (p= 0.003). During the 100 ms prior to initial contact, single-footed landings generated higher EMG values than two-footed landings (p= 0.004). One-footed landings resulted in higher peak vertical loading, lateral loading, and rate of lateral loading than two-footed landings (p< 0.05). Trends were observed indicating that muscle activation during one-footed landings is greater than for two-footed landings (p= 0.053 vs.p= 0.077). The greater forces and rate of loading produced during single-limb landings implies a higher predisposition to injury. It appears that strategic planning and training of jumps in volleyball and other jumping sports is critical.


2010 ◽  
Vol 42 ◽  
pp. 269
Author(s):  
Allison H. Gruber ◽  
Ross H. Miller ◽  
Elizabeth M. Russell ◽  
Richard E.A. van Emmerik ◽  
Joseph Hamill

Sign in / Sign up

Export Citation Format

Share Document