scholarly journals Feasibility of Low-Dose 68Ga-DOTATATE With Short Acquisition Time Using Total-Body PET/CT in Patients With Neuroendocrine Tumor

Author(s):  
Jie Xiao ◽  
Haojun Yu ◽  
Hongyan Yin ◽  
Guobin Liu ◽  
Yan Hu ◽  
...  

Abstract Purpose To explore the feasibility of a low dose regimen with short acquisition time of 68Ga-DOTATATE total-body PET/CT without compromising image quality of patients with NETs. Methods Fifty-seven consecutive NETs patients who underwent 68Ga-DOTATATE total-body PET/CT, with a low dose regimen (0.8-1.2 MBq/kg) of 68Ga-DOTATATE and acquisition time of 10 min prior to any treatment, were enrolled in the present study. The PET data were split into 1 min, 2 min, 3 min, 4 min, 5 min, 8 min and 10 min reconstruction groups, referenced as R1, R2, R3, R4, R5, R8 and R10. The subjective evaluation of image quality was scored in 5-point Likert scale based on three aspects: the overall impression of the image quality, the image noise, the lesion detectability. The objective image quality was assessed by the signal-to-noise ratio of liver (SNRL), the coefficient of variation (CV), the SUVmax, SUVmean, SD of liver, mediastinal blood pool and lesion, the tumor-liver ratio (TLR), the tumor-mediastinal blood pool-ratio (TMR) of lesion. Results The sufficient subjective image quality with a score of 3.44±0.53 could be obtained at 3 min acquisition duration, with a kappa value of 0.90. In quantitative analysis, the value of SNRL is over 10 in all reconstruction groups. As the acquisition time increases, SNRL was increased and CV was decreased within 3 min, while SNRL and CV showed no significant different between R4-R10. There was no significant different in TMR and TLR of lesion between R1-R10 (all p < 0.05). Referenced as PET images of R10, 90 SSTR-positive lesions are identified, and all those lesions are found in the R1-R10 groups (100%).Conclusion The low-dose (0.8-1.2 MBq/kg) 68Ga-DOTATATE total-body PET/CT not only shortens acquisition time, but maintains a sufficient image quality for the NETs patients.


2021 ◽  
Author(s):  
Jie Xiao ◽  
Haojun Yu ◽  
Xiuli Sui ◽  
Yan Hu ◽  
Cao Yanyan ◽  
...  

Abstract Purpose PET image quality is influenced by the patient size according to the current guideline. The purpose was to propose an optimized dose regimen to yield a constant image quality independent of patient size to meet the clinical needs.Methods A first patient cohort of 78 consecutives for oncological patients (59.7±13.7 years) who underwent a total-body PET/CT scan were retrospectively enrolled to develop the regimen. The patients were equally distributed in four BMI groups according to WHO criteria. The liver SNR (Signal noise ratio, SNRL) was obtained through manually drawing ROIs and normalized (SNRnorm) by the injected activity and acquisition time. And fits of SNRnorm against different patient-dependent parameters were performed to determine the best correlating parameter and fit method. A qualitative assessment on image quality was performed using a 5-point Likert scale to determine the acceptable threshold of SNRL. And thus, an optimized regimen was proposed and validated by a second patient cohort with prospectively enrolled 38 oncological patients. Results The linear fit showed SNRnorm was the strongest correlation (R2 = 0.69) with the BMI than other patient-dependent parameters. The qualitative assessment revealed a SNRL of 14.0 as a threshold to achieve a sufficient image quality. The optimized dose regimen was determined as a quadratic relation with BMI: Injected activity = 39.2 MBq/(-0.03*BMI+1.49)2. In the validation study, the SNRL no longer decreased with the increase of BMI. There was no significant difference of the image quality, the SNRL, between different BMI groups (p > 0.05). In addition, the injected activity was reduced by 75.6±2.9 %, 72.1±4.0 %, 67.1±4.4 % and 64.8±3.5 % compared to the first cohort for the four BMI groups, respectively.Conclusion The study recommended a quadratic relation between the 18F-FDG injected activity and the patient’s BMI and propose a regimen for total-body PET imaging. In the regimen, the image quality can maintain in a constant level independent of patient size and meet the clinical requirement even with a reduced injected activity.



Author(s):  
Yu-Mo Zhao ◽  
Ying-He Li ◽  
Tao Chen ◽  
Wei-Guang Zhang ◽  
Lin-Hao Wang ◽  
...  


2006 ◽  
Vol 45 (03) ◽  
pp. 126-133 ◽  
Author(s):  
Y. Bercier ◽  
M. Schwaiger ◽  
S. I. Ziegler ◽  
M.-J. Martínez

SummaryAim: The new PET/CT Biograph Sensation 16 (BS16) tomographs have faster detector electronics which allow a reduced timing coincidence window and an increased lower energy threshold (from 350 to 400 keV). This paper evaluates the performance of the BS16 PET scanner before and after the Pico-3D electronics upgrade. Methods: Four NEMA NU 2–2001 protocols, (i) spatial resolution, (ii) scatter fraction, count losses and random measurement, (iii) sensitivity, and (iv) image quality, have been performed. Results: A considerable change in both PET count-rate performance and image quality is observed after electronics upgrade. The new scatter fraction obtained using Pico-3D electronics showed a 14% decrease compared to that obtained with the previous electronics. At the typical patient background activity (5.3 kBq/ml), the new scatter fraction was approximately 0.42. The noise equivalent count-rate (RNEC) performance was also improved. The value at which the RNEC curve peaked, increased from 3.7·104s-1 at 14 kBq/ml to 6.4·104s-1 at 21 kBq/ml (2R-NEC rate). Likewise, the peak true count-rate value increased from 1.9·105s-1 at 22 kBq/ml to 3.4·105s-1 at 33 kBq/ml. An average increase of 45% in contrast was observed for hot spheres when using AW-OSEM (4ix8s) as the reconstruction algorithm. For cold spheres, the average increase was 12%. Conclusion: The performance of the PET scanners in the BS16 tomographs is improved by the optimization of the signal processing. The narrower energy and timing coincidence windows lead to a considerable increase of signal- to-noise ratio. The existing combination of fast detectors and adapted electronics in the BS16 tomographs allow imaging protocols with reduced acquisition time, providing higher patient throughput.



2020 ◽  
Vol 47 (11) ◽  
pp. 2507-2515 ◽  
Author(s):  
Yi-Qiu Zhang ◽  
Peng-Cheng Hu ◽  
Run-Ze Wu ◽  
Yu-Shen Gu ◽  
Shu-Guang Chen ◽  
...  


2021 ◽  
Author(s):  
Yanhua Duan ◽  
Minjie Zhao ◽  
Keyu Zan ◽  
Ying Wang ◽  
Xiao Cui ◽  
...  

Abstract PurposeThe study is to evaluate the diagnostic performance and image quality of a 20-second breath-hold (BH) 18F-FDG total-body PET acquisition compared with a free-breathing (FB) PET for stage IA pulmonary adenocarcinoma.Materials and MethodsForty-seven patients with confirmed stage IA pulmonary adenocarcinoma were enrolled. All patients underwent total-body 18F–FDG PET/CT and the acquisition time was 300 s, followed by a 20-s BH PET. A 20-s FB PET was extracted from the 300-s PET. The size and volume of lesions were measured on BHCT images. The SUVmax, tumor-to-background ratio (TBR), metabolic tumor volume (MTV), %ΔSUVmax and %ΔTBR of the lesions were measured and recorded. The lesions were further divided by distance from pleura, lesion size, and morphological characteristic for subgroup analysis. ResultsIn the cohort and subgroup analysis, the SUVmax and TBR were significantly increased with 20-BH PET compared with 300-FB PET and 20-FB PET (all p<0.05). And the %ΔSUVmax and %ΔTBR in D1 groups (≤10 mm in distance) higher than those in D2 and D3 groups (>10 mm). The diagnostic performance of BH PET was significantly higher than that of FB PET (all p<0.001). The Bland-Altman plot for agreement on lesion’s volume between BH PET and CT showed good agreement than FB PET.ConclusionThe 20-s BH PET acquisition is more sensitive to quantitative and qualitative analysis for stage IA pulmonary adenocarcinoma. 20-s BH PET/CT acquisition reduces the blurring effect of respiratory motion especially for subpleural nodules (≤10 mm in distance).



2021 ◽  
Author(s):  
Taisong Wang ◽  
Wenli Qiao ◽  
Ying Wang ◽  
Jingyi Wang ◽  
Yang Lv ◽  
...  

Abstract Purpose To propose and validate a total-body PET (TB-PET) guided deep progressive learning method (DPR) for low-dose clinical imaging of standard axial field-of-view PET/CT scanner (SAFOV-PET).Methods List-mode raw data from a total of 182 scans were collected, including 100 patient scans from a TB-PET, and 15 phantom and 67 patient scans from a SAFOV-PET. Neural networks employed in DPR were trained with the high-quality images obtained from the TB-PET using a progressive learning strategy and evaluated on a SAFOV-PET through three stages of studies. The CTN phantom was firstly used to verify the effectiveness of protocols in DPR and OSEM algorithms. Subsequently, list-mode rawdata from retrospective and prospective PET oncological patients (n=26 and 41, respectively) were rebinned into short duration scans (referred as to DPR_full, DPR_1/2, DPR_1/3, and DPR_1/4), and reconstructed with DPR. Full-duration data were reconstructed with OSEM to generate images as a reference. In the retrospective study, the image quality was evaluated using the metrics of standard uptake value (SUV) and target-to-liver ratio (TLR) in lesions, and coefficient of variation (COV) in the liver, which provided evidence for the subsequent study with real-world low-dose injection. In the prospective study, the quantification accuracy was evaluated with the agreement of SUVs in the liver, the blood pool, and the muscle between the DPR and the OSEM images. Quantitative analysis was also performed with the SUV and the TLR in lesions, furthermore on small lesions with a diameter no more than 10mm. In addition, qualitative analysis was performed using a 5-point Likert scale on the following perspectives: contrast, noise, and diagnostic confidence. Results The protocols used in the study were verified to meet the EANM EARL2 requirements. In the retrospective study, the DPR group with one-third acquisition time can yield a comparable image quality to the reference. In the prospective study, good agreement of the SUVs between DPR and OSEM was found in all the selected background tissues even if the injected dose was reduced to 1/3. Both quantitative and qualitative results demonstrated that the DPR_1/3 group showed no significant difference with the reference regarding the liver COV and subjective scores. The lesion SUVs and TLRs in the DPR_1/3 group were significantly enhanced compared with the reference, even for small lesions. Conclusions The proposed DPR method can reduce the injected dose of SAFOV-PET scan by up to 2/3 in a real-world deployment while maintaining image quality.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia Pilz ◽  
Lukas Hehenwarter ◽  
Georg Zimmermann ◽  
Gundula Rendl ◽  
Gregor Schweighofer-Zwink ◽  
...  

Abstract Background High-performance time-of-flight (TOF) positron emission tomography (PET) systems have the capability for rapid data acquisition while preserving diagnostic image quality. However, determining a reliable and clinically applicable cut-off of the acquisition time plays an important role in routine practice. This study aimed to assess the diagnostic equivalence of short acquisition time of 57 with routine 75 seconds per bed position (s/BP) of [18F]-fluoro-deoxy-glucose (FDG) PET. Phantom studies applying EARL criteria suggested the feasibility of shortened acquisition time in routine clinical imaging by 3D TOF PET/CT scanners. Ninety-six patients with melanoma, lung or head and neck cancer underwent a standard whole-body, skull base-to-thigh or vertex-to-thigh [18F]-FDG PET/CT examination using the 3D TOF Ingenuity TF PET/CT system (Philips, Cleveland, OH). The [18F]-FDG activity applied was equal to 4MBq per kg body weight. Retrospectively, PET list-mode data were used to calculate a second PET study per patient with a reduced acquisition time of 57 s instead of routine 75 s/BP. PET/CT data were reconstructed using a 3D OSEM TOF algorithm. Blinded patient data were analysed by two nuclear medicine physicians. The number of [18F]-FDG-avid lesions per body region (head&neck, thorax, abdomen, bone, extremity) and image quality (grade 1–5) were evaluated. Semiquantitative analyses were performed by standardized uptake value (SUV) measurements using 3D volume of interests (VOI). The visual and semiquantitative diagnostic equivalence of 214 [18F]-FDG-avid lesions were analysed in the routine standard (75 s/BP) as well as the calculated PET/CT studies with short acquisition time. Statistical analyses were performed by equivalence testing and Bland–Altman plots. Results Lesion detection rate per patient’s body region agreed in > 98% comparing 57 s/BP and 75 s/BP datasets. Overall image quality was determined as equal or superior to 75 s in 80% and 69%, respectively. In the semiquantitative lesion-based analyses, a significant equivalence was found between the 75 s/BP and 57 s/BP PET/CT images both for SUVmax (p = 0.004) and SUVmean (p = 0.003). Conclusion The results of this study demonstrate significant clinical and semiquantitative equivalence between short acquisition time of 57 s/BP and standard 75 s/BP 3D TOF [18F]-FDG PET/CT scanning, which may improve the patient’s workflow in routine practice.



2021 ◽  
Author(s):  
Ying-Ying Hu ◽  
Yu-Mo Zhao ◽  
Tao Chen ◽  
Wei-Guang Zhang ◽  
Lin-Hao Wang ◽  
...  

Abstract Purpose: To investigate the effects of dose reduction on image quality and lesion detectability of oncological 18F-FDG total-body PET/CT in paediatric oncological patients, and explore the minimum threshold of administered tracer activity.Methods: A total of 33 paediatric patients (weight, 8.5–58.5 kg; age 0.8–17.6 years) underwent total-body PET/CT using uEXPLORER scanner with an 18F-FDG administered dose of 3.7 MBq/kg and an acquisition time of 600 s were retrospectively enrolled. Low-dose images (0.12 – 1.85 MBq/kg) were simulated by truncating the list-mode PET data to reducing count density. Subjective image quality was rated on a 5-point scale. Semi-quantitative uptake metrics for low-dose images were assessed using region-of-interest (ROI) analysis of healthy liver and suspected lesions and were compared to full-dose images. The micro-lesion detectability was compared among the dose-dependent PET images.Results: Our analysis shows that sufficient subjective image quality and lesion conspicuity could be maintained down to 1/30th (0.12 MBq/kg) of the administered dose of 18F-FDG, where good image quality scores were given to 1/2- and 1/10- dose groups. The image noise was significantly more deranged than the overall quality and lesion conspicuity in 1/30- to 1/10-dose groups (all P < 0.05). With reduced doses, quantitative analysis of ROIs showed that SUVmax and SD in the liver increased gradually (P < 0.05), but SUVmax in the lesions and lesion-to-background ratio (LBR) showed no significant deviation down to 1/30-dose. 100% of the 18F-FDG-avid micro-lesions identified in full-dose images were localised down to 1/15-dose images; while 97% of the lesion were localized in 1/30-dose images.Conclusion: The total-body PET/CT might significantly decrease the administered dose upon maintaining the image quality and diagnostic performance of micro-lesions in paediatric patients. Data suggests that using total-body PET/CT, optimal image quality could be achieved with an administered dose-reduction down to 1/10-dose (0.37 MBq/kg).





Sign in / Sign up

Export Citation Format

Share Document