scholarly journals Surface biofunctionalization with liquid-phase plasma treatment of collagen molecules

Author(s):  
Shiori Tanaka ◽  
Shingo Kanemura ◽  
Masaki Okumura ◽  
Kazuyuki Iwaikawa ◽  
Kenichi Funamoto ◽  
...  

Abstract Surface functionalization is a key process in rendering various materials biocompatible. Whereas a number of techniques and technologies have been developed for the purpose of biofunctionalization, plasma treatment enables highly efficient surface modification. Extending plasma treatment to biomolecules in the liquid phase will control biofunctionalization via a simple process. However, interactions between plasma discharge and biomolecules or solvents are poorly understood, potentially leading to the technical limitation as to the utility of plasma treatment. In this study, we developed a technology for substrate biofunctionalization that does not require surface modification but involves direct treatment of a collagen molecules with liquid-phase plasma discharge. Biofunctionalization of collagen by plasma treatment comprises three processes that increase its reactivity with hydrophobic substrates: (1) charge-dependent changes in surface and interfacial properties of the collagen solution; (2) local conformational changes of the collagen molecules without their global structural alterations; and (3) induction of a micelle-like association formed by collagen molecules. We anticipate such plasma-induced functionalization of protein molecules to provide a versatile technique in the applications of biomaterials, including those related to pharmaceuticals and cosmetics.

2021 ◽  
Author(s):  
Shiori Tanaka ◽  
Shingo Kanemura ◽  
Masaki Okumura ◽  
Kazuyuki Iwaikawa ◽  
Kenichi Funamoto ◽  
...  

Abstract Surface functionalization is a key process in rendering various materials biocompatible. Whereas a number of techniques and technologies have been developed for the purpose of biofunctionalization, plasma treatment enables highly efficient surface modification. Extending plasma treatment to biomolecules in the liquid phase will control biofunctionalization via a simple process. However, interactions between plasma discharge and biomolecules or solvents are poorly understood, potentially leading to the technical limitation as to the utility of plasma treatment. In this study, we developed a technology for substrate biofunctionalization that does not require surface modification but involves direct treatment of a collagen molecules with liquid-phase plasma discharge. Biofunctionalization of collagen by plasma treatment comprises three processes that increase its reactivity with hydrophobic substrates: (1) charge-dependent changes in surface and interfacial properties of the collagen solution; (2) local conformational changes of the collagen molecules without their global structural alterations; and (3) induction of a micelle-like association formed by collagen molecules. We anticipate such plasma-induced functionalization of protein molecules to provide a versatile technique in the applications of biomaterials, including those related to pharmaceuticals and cosmetics.


2019 ◽  
Vol 62 (5) ◽  
pp. 1129-1134 ◽  
Author(s):  
Sarah Wu ◽  
Muhammad Aamir Bashir ◽  
Hsiang Hsieh ◽  
Anilkumar Krosuri ◽  
Armando McDonald

Abstract. In this study, the use of liquid-phase plasma discharge (LPPD) technology to accelerate the transesterification process was explored. An innovative LPPD reactor was first evaluated by varying the conductive opening size on the dielectric plate (0.75, 1.0, and 1.25 mm) coupled with five methanol to oil molar ratios (MOMR; 3, 4, 5, 6, and 7) and two liquid flowrates through the reactor (2.7 and 4.1 mL s-1) at a given catalyst (NaOH) to oil ratio (NaOR) of 0.8% (w/w). The optimal combination of opening size (1.0 mm), MOMR (5), and flowrate (2.7 mL s-1) was then fixed while the NaOR was varied from 0.4% to 1.2% (w/w) in 0.2% increments to determine the best NaOR for the reactor. The results showed that the best combination of the four operating parameters was an opening size of 1.0 mm, MOMR of 5, liquid flowrate of 2.7 mL s-1, and NaOR of 0.6% (w/w), with which a biodiesel conversion rate of 99.5% was obtained at an applied voltage of 1.2 kV. The transesterification reaction time was found to be only 923 ms. The developed LPPD technology has potential to position biodiesel competitively against petroleum diesel. Keywords: Biodiesel conversion, Liquid-phase plasma discharge, Soybean oil, Transesterification


2008 ◽  
Vol 80 (9) ◽  
pp. 2003-2011 ◽  
Author(s):  
Osamu Takai

Liquid-phase plasma is not well known, although it has been used sparingly in water treatments and electrical discharge machining. We have named the liquid-phase plasma "solution plasma" and developed solution plasma processing (SPP). This paper reports the applications of SPP to syntheses of nanoparticles, surface modification of metals, and sterilization of water.


2019 ◽  
Vol 228 ◽  
pp. 405-417 ◽  
Author(s):  
Sarah Wu ◽  
Shaobo Deng ◽  
Jun Zhu ◽  
Muhammad Aamir Bashir ◽  
Forrest Izuno

TAPPI Journal ◽  
2014 ◽  
Vol 13 (4) ◽  
pp. 9-14 ◽  
Author(s):  
DANIEL T. LEE ◽  
JEFFERY S. HSIEH

A new method of improving deinking of flexographic and inkjet printed paper has been investigated. It was found that the liquid plasma treatment method was able to improve the ink elimination and luminosity without negatively impacting the color a* or ink elimination of the recycled paper. However, it was found that the filtrate darkening was increased by the liquid plasma treatment because the treatment was not able to increase the amount of ink removed through flotation. Because of this, the liquid plasma treatment is likely improving the deinkability parameters by improving the ink detachment of flexographic and inkjet inks.


Sign in / Sign up

Export Citation Format

Share Document