scholarly journals Hydrofracturing in Situ Stress Measurements in Itabirite Brazilian Ferriferous Quadrilater, and their Limitations

Author(s):  
Henrique de Andrade Penido ◽  
Rodrigo Peluci de Figueiredo ◽  
André Pacheco de Assis ◽  
Vidal Félix Navarro Torres ◽  
Juan Manuel Girao Sotomayor ◽  
...  

Abstract This article presents a first attempt to carry out measurements (magnitudes and orientations) of the in situ stress in itabirite rocks in the region of the Brazilian Ferriferous Quadrilater obtained by hydraulic fracture tests at a depth of 399 m. Previous studies available in this rock mass consider estimated values of k index (Sh / Sv), and it is not a practice adopted to carry out in situ stress tests in this region and rockmass to support geotechnical analysis. The area of study is located at a depth of 500 m in a pit; therefore, the determination of the in situ stress distribution is very important to assess the stability of the mining open pit. The activities, from the planning to the execution of the tests, and the results are presented. The rock mass under study shows the presence of different geological structures, such as banding and foliation, which resulted in difficulties with performing the tests, and only 12.5% of the tests were successful. The results contribute to understanding the strains and stresses induced by mining activities in slopes in the Brazilian Ferriferous Quadrilater and their impacts on surrounding structures. For a better determination of the regional in situ stresses in the rock mass of the Brazilian Ferriferous Quadrilater, it is recommended to perform hydraulic tests on pre-existing fractures.

2013 ◽  
Vol 671-674 ◽  
pp. 245-250
Author(s):  
Wen Hui Tan ◽  
Ya Liang Li ◽  
Cong Cong Li

At present, in-situ stress was not considered in Limit Equilibrium Method (LEM) of slopes, the influence of in-situ stress is very small on the stability of conventional slopes, but in deep-depressed open-pit mines, the influence should not be neglected. Formula for calculating the Factor of Safety (FOS) under the effect of horizontal in-situ stress was deduced using General Slice Method (GSM) of two-dimensional (2D) limit equilibrium method in this paper,a corresponding program SSLOPE was built, and the software was used in a deep- depressed open-pit iron mine. The results show that the FOS of the slope decreased by 20% when horizontal in-situ stress is considered, some reinforcements must be taken. Therefore, the influence of in-situ stress on slope stability should be taken into account in deep open –pit mines.


2006 ◽  
Vol 306-308 ◽  
pp. 1509-1514 ◽  
Author(s):  
Jing Feng ◽  
Qian Sheng ◽  
Chao Wen Luo ◽  
Jing Zeng

It is very important to study the pristine stress field in Civil, Mining, Petroleum engineering as well as in Geology, Geophysics, and Seismology. There are various methods of determination of in-situ stress in rock mass. However, hydraulic fracturing techniques is the most convenient method to determine and interpret the test results. Based on an hydraulic fracturing stress measurement campaign at an underground liquefied petroleum gas storage project which locates in ZhuHai, China, this paper briefly describes the various uses of stress measurement, details of hydraulic fracturing test system, test procedure adopted and the concept of hydraulic fracturing in arriving at the in-situ stresses of the rock mass.


2021 ◽  
Vol 4 (2) ◽  
pp. p1
Author(s):  
Dyson Moses ◽  
Hideki Shimada ◽  
Takashi Sasaoka ◽  
Akihiro Hamanaka ◽  
Tumelo K. M Dintwe ◽  
...  

The investigation of the influence of in situ stress in Open Pit Mine (OPM) projects has not been accorded a deserved attention despite being a fundamental concern in the design of underground excavations. Hence, its long-term potential adverse impacts on pit slope performance are overly undermined. Nevertheless, in mines located in tectonically active settings with a potential high horizontal stress regime like the Songwe mine, the impact could be considerable. Thus, Using FLAC3D 5.0 software, based on Finite Difference Method (FDM) code, we assessed the role of stress regimes as a potential triggering factor for slope instability in Songwe mine. The results of the evaluated shearing contours and quantified strain rate and displacement values reveal that high horizontal stress can reduce the stability performance of the pit-wall in spite of the minimal change in Factor of Safety (FoS). Since mining projects have a long life span, it would be recommendable to consider “in situ stress-stability analyses” for OPM operations that would be planned to extend to greater depths and those located in tectonically active regions.


2018 ◽  
Vol 65 (2) ◽  
pp. 59-70
Author(s):  
Matej Nagy

Abstract The complicated rock structures and the stability of surrounding rocks of the underground powerhouse are key ground mechanical challenges for hydropower projects. In this paper, an example of contributing self-support capacity of rock mass to evaluate optimised support for long-term usage of structure is given. It describes importance of investigations in the initial in situ stress distribution, rock mechanical and geological properties, engineering rock mass classifications by different methods, numerical modelling, comparison of tools for stability and support analysis and proper stability control for rock excavation and support. The results show that after underground excavations in hard rock, detailed analysis of measures to investigate deformation and self-supporting capacity creation is useful and a cost-saving procedure.


Sign in / Sign up

Export Citation Format

Share Document