scholarly journals Soil Organic Carbon Mineralization and its Temperature Sensitivity Along a Vegetation Restoration Gradient in Subtropical China

Author(s):  
Xiong Fang ◽  
Haozhao Sun ◽  
Yunpeng Huang ◽  
Jundi Liu ◽  
Yulin Zhu ◽  
...  

Abstract Background and aims Soil organic carbon (SOC) mineralization produces important CO2 flux from terrestrial ecosystems which can provide feedbacks to climates. Vegetation restoration can affect SOC mineralization and its temperature sensitivity (Q10), but how this effect is related to soil moisture remains uncertain. Methods We performed a laboratory incubation using soils of different vegetation restoration stages (i.e., degraded vegetation [DS], plantation [PS], and secondary natural forest [SFS]) maintained under different moisture and temperature conditions to explore the combined effects of vegetation restoration and soil moisture on SOC mineralization and Q10. Results We found that cumulative SOC mineralization in PS and SFS were about 11.7 times higher than that in the DS, associated with higher SOC content and microbial biomass. Increased soil moisture and temperature led to higher SOC mineralization in the SFS and PS. However, in the DS, soil moisture did not affect SOC mineralization, but temperature enhancement solely increased (158.7%) SOC mineralization at the 60%MWHC treatment. Furthermore, significant interactive effect of vegetation restoration and soil moisture on Q10 was detected. At the 60%MWHC treatment, Q10 declined with vegetation restoration age. Nevertheless, at the 30%MWHC treatment, Q10 was lower in the DS than that in the PS. Higher soil moisture did not affect Q10 in the PS and SFS, but enhanced Q10 in the DS. Conclusions Our results highlight that the responses of SOC mineralization and Q10 to vegetation restoration were highly dependent on soil moisture and substrate availability, and vegetation restoration reduced the influence of soil moisture on Q10.

2015 ◽  
Vol 12 (11) ◽  
pp. 3655-3664 ◽  
Author(s):  
Y. J Zhang ◽  
S. L Guo ◽  
M. Zhao ◽  
L. L. Du ◽  
R. J. Li ◽  
...  

Abstract. Temperature sensitivity of soil organic carbon (SOC) mineralization (i.e., Q10) determines how strong the feedback from global warming may be on the atmospheric CO2 concentration; thus, understanding the factors influencing the interannual variation in Q10 is important for accurately estimating local soil carbon cycle. In situ SOC mineralization rate was measured using an automated CO2 flux system (Li-8100) in long-term bare fallow soil in the Loess Plateau (35°12' N, 107°40' E) in Changwu, Shaanxi, China from 2008 to 2013. The results showed that the annual cumulative SOC mineralization ranged from 226 to 298 g C m−2 yr−1, with a mean of 253 g C m−2 yr−1 and a coefficient of variation (CV) of 13%, annual Q10 ranged from 1.48 to 1.94, with a mean of 1.70 and a CV of 10%, and annual soil moisture content ranged from 38.6 to 50.7% soil water-filled pore space (WFPS), with a mean of 43.8% WFPS and a CV of 11%, which were mainly affected by the frequency and distribution of precipitation. Annual Q10 showed a quadratic correlation with annual mean soil moisture content. In conclusion, understanding of the relationships between interannual variation in Q10, soil moisture, and precipitation are important to accurately estimate the local carbon cycle, especially under the changing climate.


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 9957-9967
Author(s):  
Gang Xu ◽  
Jiawei Song ◽  
Yang Zhang ◽  
Yingchun Lv

Intense droughts and extreme precipitation events are likely to occur more frequently with global climate change. These drying-rewetting (DW) cycles affect the soil carbon (C) cycle. Biochar addition are reported to affect SOC mineralization and soil organic carbon (SOC) storage. However, the effects of biochar application on SOC mineralization during DW cycles are poorly understood. Two wheat straw (WS25) biochar produced at 300 °C (WS300) and 600 °C (WS600) were used to explore the effects of biochar on SOC mineralization under artificial DW cycles as compared to constant moisture (CM). It was found that biochar had different effects on SOC mineralization depending on biochar type or drying/rewetting period of DW cycles. Just like CK and WS25, WS600 application decreased SOC mineralization under DW cycles compared to CM. To some extent, SOC mineralization during DW cycles was similar to CM for WS300. The results suggested that WS300 addition diminished the reducing effect of DW cycle on SOC mineralization. In addition, biochar exhibited different effects on SOC mineralization depending on the drying and rewetting period under DW cycles. Biochar (WS300) addition during the drying period had less effect on SOC mineralization but increased the flush effect of SOC mineralization during the rewetting period. In conclusions, biochar application significantly affect SOC mineralization following DW cycles.


Sign in / Sign up

Export Citation Format

Share Document