scholarly journals Soil moisture influence on the interannual variation in temperature sensitivity of soil organic carbon mineralization in the Loess Plateau

2015 ◽  
Vol 12 (11) ◽  
pp. 3655-3664 ◽  
Author(s):  
Y. J Zhang ◽  
S. L Guo ◽  
M. Zhao ◽  
L. L. Du ◽  
R. J. Li ◽  
...  

Abstract. Temperature sensitivity of soil organic carbon (SOC) mineralization (i.e., Q10) determines how strong the feedback from global warming may be on the atmospheric CO2 concentration; thus, understanding the factors influencing the interannual variation in Q10 is important for accurately estimating local soil carbon cycle. In situ SOC mineralization rate was measured using an automated CO2 flux system (Li-8100) in long-term bare fallow soil in the Loess Plateau (35°12' N, 107°40' E) in Changwu, Shaanxi, China from 2008 to 2013. The results showed that the annual cumulative SOC mineralization ranged from 226 to 298 g C m−2 yr−1, with a mean of 253 g C m−2 yr−1 and a coefficient of variation (CV) of 13%, annual Q10 ranged from 1.48 to 1.94, with a mean of 1.70 and a CV of 10%, and annual soil moisture content ranged from 38.6 to 50.7% soil water-filled pore space (WFPS), with a mean of 43.8% WFPS and a CV of 11%, which were mainly affected by the frequency and distribution of precipitation. Annual Q10 showed a quadratic correlation with annual mean soil moisture content. In conclusion, understanding of the relationships between interannual variation in Q10, soil moisture, and precipitation are important to accurately estimate the local carbon cycle, especially under the changing climate.

2015 ◽  
Vol 12 (2) ◽  
pp. 1453-1474 ◽  
Author(s):  
Y. Zhang ◽  
S. Guo ◽  
M. Zhao ◽  
L. Du ◽  
R. Li ◽  
...  

Abstract. Temperature sensitivity of SOC mineralization (Q10) determines how strong the feedback from global warming may be on the atmospheric CO2 concentration, thus understanding the factors influencing the interannual variation in Q10 is important to accurately estimate the local soil carbon cycle. In situ SOC mineralization was measured using an automated CO2 flux system (Li-8100) in long-term bare fallow soil in the Loess Plateau (35° 12' N, 107° 40' E) in Changwu, Shaanxi, China form 2008 to 2013. The results showed that the annual cumulative SOC mineralization ranged from 226 to 298 g C m−2 y−1 (mean =253 g C m−2 y−1; CV =13%), annual Q10 ranged from 1.48 to 1.94 (mean =1.70; CV =10%), and annual soil moisture content ranged from 38.6 to 50.7% WFPS (mean =43.8% WFPS; CV =11%), which were mainly affected by the frequency and distribution of precipitation. Annual Q10 showed a negative quadratic correlation with soil moisture. In conclusion, understanding of the relationships between interannual variation in Q10 of SOC mineralization, soil moisture and precipitation is important to accurately estimate the local carbon cycle, especially under the changing climate.


2021 ◽  
Author(s):  
Xiong Fang ◽  
Haozhao Sun ◽  
Yunpeng Huang ◽  
Jundi Liu ◽  
Yulin Zhu ◽  
...  

Abstract Background and aims Soil organic carbon (SOC) mineralization produces important CO2 flux from terrestrial ecosystems which can provide feedbacks to climates. Vegetation restoration can affect SOC mineralization and its temperature sensitivity (Q10), but how this effect is related to soil moisture remains uncertain. Methods We performed a laboratory incubation using soils of different vegetation restoration stages (i.e., degraded vegetation [DS], plantation [PS], and secondary natural forest [SFS]) maintained under different moisture and temperature conditions to explore the combined effects of vegetation restoration and soil moisture on SOC mineralization and Q10. Results We found that cumulative SOC mineralization in PS and SFS were about 11.7 times higher than that in the DS, associated with higher SOC content and microbial biomass. Increased soil moisture and temperature led to higher SOC mineralization in the SFS and PS. However, in the DS, soil moisture did not affect SOC mineralization, but temperature enhancement solely increased (158.7%) SOC mineralization at the 60%MWHC treatment. Furthermore, significant interactive effect of vegetation restoration and soil moisture on Q10 was detected. At the 60%MWHC treatment, Q10 declined with vegetation restoration age. Nevertheless, at the 30%MWHC treatment, Q10 was lower in the DS than that in the PS. Higher soil moisture did not affect Q10 in the PS and SFS, but enhanced Q10 in the DS. Conclusions Our results highlight that the responses of SOC mineralization and Q10 to vegetation restoration were highly dependent on soil moisture and substrate availability, and vegetation restoration reduced the influence of soil moisture on Q10.


Author(s):  
Erwin Prastowo ◽  
Laily Mukaromah

Litter plays a crucial role in the formation of soil organic carbon (SOC), and potentially affects different pools in the context of soil carbon cycle. To improve knowledge and understanding with respect to the dynamics of carbon in coffee and cocoa cropping systems, there is a need to develop a mechanistic model to explain the formation of carbon especially in different background of soil, climate and agronomic management. Short-term observation was performed in different cropping systems, i.e. coffee (Coff) and cocoa (CoL) with lamtoro(Leucaena sp.) shade trees, and cocoa with oil palm (Elaeis guineensis) shade trees (CoP), and teak (Tectona grandis) conservation area, to investigate the quantitative amount of leaf litter-derived carbon. Additionally, to improve the understanding with respect to the formation of soil organic carbon, a simple model is developed by employing organic carbon storage coefficient (hi) as parameter to validate the observation data from Coff and CoL plots. Leaf litter is collected daily with concomitant microclimate records, i.e. air temperature, relative humidity, light intensity, and soil temperature. Composite soil and leaf samples are collected for organic carbon, soil moisture content, and leaf relative water content (RWC), for laboratory identification. Analysis of data suggests the presence of cropping system effect, i.e. shading condition and agronomical practices such as pruning, to microclimate variations except for soil temperature. Furthermore, cropping systems do not significantly influence soil moisture content, amount of organic carbon, and RWC. With higher model efficiency (EF), the simulated model fits better for CoL, EF 0.95, than Coff, EF 0.58. Model simulation, with both hi values are 0.017 and 0.014 in Coff and CoL, reveals a possibly cropping system specific curve pattern. A faster SOC formation in Coff plot has suggested a crucial role the amount of leaf litter to support with continuous carbon supply. The simulation implies the presence of soil related-maximum point limiting carbon storage capacity


1998 ◽  
Vol 13 (2) ◽  
pp. 83-89 ◽  
Author(s):  
A.J. Tenge ◽  
F.B.S. Kaihura ◽  
R. Lal ◽  
B.R. Singh

AbstractSoil erosion is a major threat to sustaining agricultural production in Tanzania. However, quantitative information is scanty on its effects on yields of major crops for principal soils and management practices. We conducted this study to determine erosion effects on soil moisture, related properties and corn yield on Tropeptic Haplustox and Ultic Haplustalf soils at Mlingano in Tanzania. Four erosion classes (least, slight, moderate, and severe) on Tropeptic Haplustox and three erosion classes (slight, moderate, and severe) on Ultic Haplustalf were established according to the thickness of the Ap horizon under natural field conditions. Accelerated soil erosion reduced soil moisture content, soil organic carbon, available water capacity and water use efficiency. Mean volumetric soil moisture content (average of both soils) during the growing season was 23.3% for severe, 24.8% for moderate, and 25.7% for slight erosion. Mean soil organic carbon content was 1.15% for severe, 1.64% for moderate and 1.97% for slight erosion. Mean available water capacity was 2.6 cm for severe, 3.5 cm for moderate, and 4.0 cm for slight erosion. Soil bulk density and excessive degree days of soil temperature above 25°C increased with severity of erosion. These adverse changes accentuated constraints on crop growth and reduced corn (Zea mays) yield on severely eroded soil by 45% and 59% for Tropeptic Haplustox and Ultic Haplustalf soils, respectively. The water use efficiency of corn was 21.6 kg ha-1cm-1in the least eroded class versus 17 kg ha-1cm-1in the severely eroded class for the Tropeptic Haplustox, and 23 kg ha-1cm-1in the slightly eroded and 18.1 kg ha-1cm-1in the severely eroded class for Ultic Haplustalf.


Agropedology ◽  
2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Christy Sangma ◽  
◽  
A. Thirugnanavel ◽  
Ph. Romen Sharma ◽  
G. Rajesha ◽  
...  

The pineapple var. Kew was planted on black polythene film mulching with double hedgerow planting to find out the influence of mulches on soil and plant. The soil samples were collected twice (kharif and rabi) at two different depths (0-15 and 15-30 cm), and the pH, soil organic carbon (SOC), nitrogen, phosphorus, potassium, basal respiration and soil microbial biomass carbon were analysed. The data revealed that soil organic carbon and available N, P, and K content were slightly higher in the bottom hill than the top hill. The mulched field had higher nutrients than the non-mulched field. The fertility level varied slightly between the seasons. The biological parameters (microbial biomass carbon) were observed to be significantly higher (P≤0.05) in the bottom hill in both the seasons than the non-mulched field. The soil moisture content ranged from 5.9 % in March to 24.24 % August in the bottom hill (15-30 cm depth). The moisture content in the non-mulched field was lower than the mulched field.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiqi Wang ◽  
Xiaobo Feng ◽  
Zhihong Yao ◽  
Zhaolong Ma ◽  
Guodong Ji

Soil moisture is a crucial factor limiting the growth and survival of plants on the Loess Plateau. Its level has a severe impact on plants’ growth and development and the type and distribution characteristics of communities. This study area is the Jihe Basin in the Loess Plateau, China. Multiple linear regression models with different environmental variables (land use, topographic and meteorological factors, etc.) were developed to simulate soil moisture’s spatial and temporal changes by integrating field experiments, indoor analysis, and GIS spatial analysis. The model performances were evaluated in the Jihe Basin, with soil moisture content measurements. The result shows that soil moisture content is positively correlated with soil bulk density, monthly rainfall, topographic wetness index, land use coefficient, and slope aspect coefficient but negatively correlated with the monthly-averaged temperature and the relative elevation coefficient. The selected variables are all related to the soil moisture content and can account for 75% of the variations of soil moisture content, and the remaining 25% of the variations are related to other factors. Comparing the simulated and measured values at all sampling points shows that the average error of all the simulated values is 0.09, indicating that the simulation has high accuracy. The spatial distribution of soil moisture content is significantly affected by land use and topographic factors, and seasonal variation is remarkable in the year. Seasonal variation of soil moisture content is determined by the seasonal variation of rainfall and the air temperature (determining evaporation) and vegetation growth cycle. Therefore, the proposed model can simulate the spatial and temporal variation of soil moisture content and support developing the soil and water loss model on a basin scale.


Sign in / Sign up

Export Citation Format

Share Document