scholarly journals Changes in Peripheral Arterial Blood Pressure After Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) in Non-traumatic Cardiac Arrest Patients

Author(s):  
Jostein Rødseth Brede ◽  
Eivinn Skjærseth ◽  
Pål Klepstad ◽  
Trond Nordseth ◽  
Andreas Jørstad Krüger

Abstract Background Resuscitative endovascular balloon occlusion of the aorta (REBOA) may be an adjunct treatment to cardiopulmonary resuscitation (CPR). Aortic occlusion may increase aortic pressure and increase the coronary perfusion pressure and the cerebral blood flow. Peripheral arterial blood pressure is often measured during or after CPR, however, changes in peripheral blood pressure after aortic occlusion is insufficiently described. This study aimed to assess changes in peripheral arterial blood pressure after REBOA in patients with out of hospital cardiac arrest.Methods An observational study performed at the helicopter emergency medical service in Trondheim (Norway). Eligible patients received REBOA as adjunct treatment to advanced cardiac life support. Peripheral invasive arterial blood pressure and end-tidal CO2 (EtCO2) was measured before and after aortic occlusion. Differences in arterial blood pressures and EtCO2 before and after occlusion was analysed with Wilcoxon Signed Rank test.Results Five patients were included to the study. The median REBOA procedural time was 11 minutes and median time from dispatch to aortic occlusion was 50 minutes. Two patients achieved return of spontaneous circulation. EtCO2 increased significantly 60 seconds after occlusion, by a mean of 1.16 kPa (p = 0.043). Before occlusion the arterial pressure in compression phase were 43.2 (12 – 112) mmHg, the mean pressure 18.6 (4 – 27) mmHg and pressure in the relaxation phase 7.8 (-7 – 22) mmHg. Two minutes after aortic occlusion the corresponding pressures were 114.8 (23 – 241) mmHg, 44.6 (15 – 87) mmHg and 14.8 (0 – 29) mmHg. The arterial pressures were significant different in the compression phase and as mean pressure (p = 0.043 and p = 0.043, respectively) and not significant in the relaxation phase (p = 0.223).Conclusion This study is, to our knowledge, the first to assess the peripheral invasive arterial blood pressure response to aortic occlusion during CPR in the pre-hospital setting. REBOA application during CPR significantly increase the peripheral artery pressures. This likely indicates improved central aortic blood pressure and warrants studies with simultaneous peripheral and central blood pressure measurement during aortic occlusion.Trial registration The study is registered in ClinicalTrials.gov (NCT03534011).

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jostein Rødseth Brede ◽  
Eivinn Skjærseth ◽  
Pål Klepstad ◽  
Trond Nordseth ◽  
Andreas Jørstad Krüger

Abstract Background Resuscitative endovascular balloon occlusion of the aorta (REBOA) may be an adjunct treatment to cardiopulmonary resuscitation (CPR). Aortic occlusion may increase aortic pressure and increase the coronary perfusion pressure and the cerebral blood flow. Peripheral arterial blood pressure is often measured during or after CPR, however, changes in peripheral blood pressure after aortic occlusion is insufficiently described. This study aimed to assess changes in peripheral arterial blood pressure after REBOA in patients with out of hospital cardiac arrest. Methods A prospective observational study performed at the helicopter emergency medical service in Trondheim (Norway). Eligible patients received REBOA as adjunct treatment to advanced cardiac life support. Peripheral invasive arterial blood pressure and end-tidal CO2 (EtCO2) was measured before and after aortic occlusion. Differences in arterial blood pressures and EtCO2 before and after occlusion was analysed with Wilcoxon Signed Rank test. Results Five patients were included to the study. The median REBOA procedural time was 11 min and median time from dispatch to aortic occlusion was 50 min. Two patients achieved return of spontaneous circulation. EtCO2 increased significantly 60 s after occlusion, by a mean of 1.16 kPa (p = 0.043). Before occlusion the arterial pressure in the compression phase were 43.2 (range 12–112) mmHg, the mean pressure 18.6 (range 4–27) mmHg and pressure in the relaxation phase 7.8 (range − 7 – 22) mmHg. After aortic occlusion the corresponding pressures were 114.8 (range 23–241) mmHg, 44.6 (range 15–87) mmHg and 14.8 (range 0–29) mmHg. The arterial pressures were significant different in the compression phase and as mean pressure (p = 0.043 and p = 0.043, respectively) and not significant in the relaxation phase (p = 0.223). Conclusion This study is, to our knowledge, the first to assess the peripheral invasive arterial blood pressure response to aortic occlusion during CPR in the pre-hospital setting. REBOA application during CPR is associated with a significantly increase in peripheral artery pressures. This likely indicates improved central aortic blood pressure and warrants studies with simultaneous peripheral and central blood pressure measurement during aortic occlusion. Trial registration The study is registered in ClinicalTrials.gov (NCT03534011).


1941 ◽  
Vol 74 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Philip D. McMaster

Advantage has been taken of the relative transparency of the claw of the mouse to devise a method, here described, to measure the blood pressure in the animal's leg. Direct measurements of the systolic blood pressure from the carotid arteries of anesthetized mice have also been made. Simultaneous blood pressure readings by both these methods applied to the same animal showed close agreement. The systolic pressure ranged from 60 to 126 mm. Hg, according to the conditions.


2006 ◽  
Vol 34 (03) ◽  
pp. 449-460 ◽  
Author(s):  
Yu Hsin Chang ◽  
Chia I Tsai ◽  
Jaung Geng Lin ◽  
Yue Der Lin ◽  
Tsai Chung Li ◽  
...  

Traditional Chinese Medicine (TCM) holds that Blood and Qi are fundamental substances in the human body for sustaining normal vital activity. The theory of Qi, Blood and Zang-Fu contribute the most important theoretical basis of human physiology in TCM. An animal model using conscious rats was employed in this study to further comprehend how organisms survive during acute hemorrhage by maintaining the functionalities of Qi and Blood through dynamically regulating visceral physiological conditions. Pulse waves of arterial blood pressure before and after the hemorrhage were taken in parallel to pulse spectrum analysis. Percentage differences of mean arterial blood pressure and harmonics were recorded in subsequent 5-minute intervals following the hemorrhage. Data were analyzed using a one-way analysis of variance (ANOVA) with Duncan's test for pairwise comparisons. Results showed that, within 30 minutes following the onset of acute hemorrhage,the reduction of mean arterial blood pressure was improved from 62% to 20%. Throughout the process, changes to the pulse spectrum appeared to result in a new balance over time. The percentage differences of the second and third harmonics, which were related to kidney and spleen, both increased significantly than baseline and towards another steady state. Apart from the steady state resulting from the previous stage, the percentage difference of the 4th harmonic decreased significantly to another steady state. The observed change could be attributed to the induction of functional Qi, and is a result of Qi-Blood balancing activity that organisms hold to survive against acute bleeding.


2019 ◽  
Vol 127 (4) ◽  
pp. 1050-1057
Author(s):  
Katelyn N. Wood ◽  
Danielle K. Greaves ◽  
Richard L. Hughson

We tested the hypothesis that acute changes in arterial blood pressure (BP) when astronauts moved between supine and standing posture before and after spaceflight can be tracked by beat-to-beat changes in pulse arrival time (PAT). Nine male crewmembers (45 ± 7 yr of age; mean mission length: 165 ± 13 days) participated in a standardized supine-to-sit-to-stand test (5 min-30 s-3 min) before flight and 1 day following return to Earth with continuous monitoring of ECG and finger arterial BP. PAT was determined from the R-wave of the ECG to the foot of the BP waveform. On average, modest cardiovascular deconditioning was detected by ~10 beats/min increase in heart rate in supine and standing posture after spaceflight ( P < 0.05). When looking across the full data collection period, the r2 values between inverse of PAT (1/PAT) and systolic (SBP) and diastolic BP (DBP) varied considerably between individuals (SBP preflight 0.142 ± 0.186, postflight 0.262 ± 0.243). Individual variability was consistent during periods of transition (SBP preflight 0.284 ± 0.324, postflight 0.297 ± 0.269); however, when SBP dropped >20 mmHg, r2 was significant in 5 of 5 preflight tests and 5 of 7 postflight tests. The standard error of the estimate based on a simple linear model during both pre- and postflight testing was 9–11 mmHg for SBP and 6–7 mmHg for DBP. Overall, the results support the hypothesis that PAT tracked dynamic changes in BP. PAT as a noninvasive, nonintrusive surrogate for changes in BP could be developed as an indicator of risk for syncope on return from spaceflight or other Earth-based applications. NEW & NOTEWORTHY Astronauts returning to Earth’s gravity are at increased risk of low blood pressure on standing. Arterial pulse arrival time tracked the decrease in arterial blood pressure on moving from supine to upright posture. Nonintrusive technology providing indicators sensitive to acute changes in blood pressure could act as an early warning system to identify risk for hypotension that place astronauts, or people on Earth, at risk of impaired cognitive performance, fainting, and falls.


1984 ◽  
Vol 57 (5) ◽  
pp. 1417-1421 ◽  
Author(s):  
D. A. Daskalopoulos ◽  
J. T. Shepherd ◽  
S. C. Walgenbach

To examine the role of cardiopulmonary receptors in arterial blood pressure regulation during and after exercise, conscious dogs with chronic sinoaortic denervation were subjected to 12 min of light exercise and 12 min of exercise that increased in severity every 3 min. Hemodynamic measurements were made before and after interruption of cardiopulmonary afferents by bilateral cervical vagotomy. During both exercise protocols, after an initial transient decrease, the arterial blood pressure remained close to resting values before and after vagotomy. On cessation of the graded exercise, the arterial blood pressure did not change before, but a rapid and sustained increase in pressure occurred after vagotomy. At the time of this increase the cardiac output and heart rate were returning rapidly to the resting level. The study demonstrates that in the chronic absence of arterial baroreflexes, vagal afferents prevent a rise in arterial blood pressure after vigorous exercise presumably by the action of cardiopulmonary receptors causing a rapid dilatation of systemic resistance vessels.


1994 ◽  
Vol 14 (6) ◽  
pp. 939-943 ◽  
Author(s):  
Zheng Gang Zhang ◽  
Michael Chopp ◽  
Kenneth I. Maynard ◽  
Michael A. Moskowitz

CBF increases concomitantly with cortical spreading depression (CSD). We tested the hypothesis that CBF changes during CSD are mediated by nitric oxide (NO). Male Wistar rats (n = 23) were subjected to KCl-induced CSD before and after administration of nitric oxide synthase (NOS) inhibitors N-nitro-l-arginine (L-NNA) or N-nitro-l-arginine methyl ester (L-NAME) and in nontreated animals. CBF, CSD, and mean arterial blood pressure were recorded. Brain NOS activity was measured in vitro in control, L-NNA, and L-NAME-treated rats by the conversion of [3H]arginine to [3H]citrulline. Our data show that the NOS inhibitors did not significantly change regional CBF (rCBF) during CSD, even though cortical NOS activity was profoundly depressed and systemic arterial blood pressure was significantly increased. Our data suggest that rCBF during CSD in rats is not regulated by NO.


1989 ◽  
Vol 67 (5) ◽  
pp. 423-427 ◽  
Author(s):  
J. Kettler ◽  
B. Y. Ong ◽  
D. Bose

Pial arteriolar diameter changes inversely with changes in systemic arterial blood pressure. Such changes are consistent with autoregulatory functions. These responses are reduced by a brief period of hypoxia followed by reoxygenation. By using an open cranial window preparation we assessed the changes in pial arteriolar diameters during blood pressure changes in rats induced by hemorrhage and reinfusion of blood, before and after a brief period of hypoxia. The slopes of the changes in pial arteriolar diameter as a function of mean arterial blood pressure were −0.47 ± 0.26 μm/mmHg (mean ± SD; 1 mmHg = 133.3 Pa) before hypoxia and −0.11 ± 0.23 μm/mmHg after hypoxia in the untreated rats. In ouabain-treated rats, corresponding slopes were −0.42 ± 0.24 and −0.46 ± 0.22 μm/mmHg. The observed protective effects of ouabain might be a blockade of the Na–K pump in the sarcolemma of the vascular smooth muscle.Key words: vascular smooth muscle, electrogenic sodium pump, metabolic inhibition.


Sign in / Sign up

Export Citation Format

Share Document