scholarly journals Corncob structures in dental plaque reveal microhabitat taxon specificity

Author(s):  
Viviana Morillo-Lopez ◽  
Alexandra Sjaarda ◽  
Imon Islam ◽  
Gary G. Borisy ◽  
Jessica Mark Welch

Abstract Background The human mouth is a natural laboratory for studying how bacterial communities differ across habitats. Different bacteria colonize different surfaces in the mouth – teeth, tongue dorsum, and keratinized and non-keratinized epithelia – despite the short physical distance between these habitats and their connection through saliva. We sought to determine whether more tightly defined microhabitats might have more tightly defined sets of resident bacteria. A microhabitat may be characterized, for example, as the space adjacent to a particular species of bacterium. Corncob structures of dental plaque, consisting of coccoid bacteria bound to filaments of Corynebacterium cells, present an opportunity to analyze the community structure of one such well-defined microhabitat within a complex natural biofilm. Here we investigate by fluorescence in situ hybridization and spectral imaging the composition of the cocci decorating the filaments. Results The range of taxa observed in corncobs was limited to a small subset of the taxa present in dental plaque. Among four major groups of dental plaque streptococci, two were the major constituents of corncobs, including one that was the most abundant Streptococcus species in corncobs despite being relatively rare in dental plaque overall. Images showed both Streptococcus types in corncobs in all individual donors, suggesting that the taxa possess different ecological roles or that mechanisms exist for stabilizing the persistence of functionally redundant taxa in the population. Direct taxon-taxon interactions were observed not only between the Streptococcus cells and the central corncob filament but also between Streptococcus cells and the limited subset of other plaque bacteria detected in the corncobs, indicating microhabitat specialization involving these taxa as well. Conclusions The spatial organization we observed in corncobs suggests that each of the microbial participants is capable of interacting with multiple, albeit limited, potential partners, a feature that may encourage the long-term stability of the community. Additionally, our results suggest the general principle that a precisely defined microhabitat will be inhabited by a small and well-defined set of microbial taxa.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
La Li ◽  
Weijia Liu ◽  
Kai Jiang ◽  
Di Chen ◽  
Fengyu Qu ◽  
...  

AbstractZn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.


2021 ◽  
Vol 336 ◽  
pp. 457-468
Author(s):  
Charlotte Molinier ◽  
Marina Picot-Groz ◽  
Océane Malval ◽  
Sophie Le Lamer-Déchamps ◽  
Joël Richard ◽  
...  

2018 ◽  
Vol 12 (9) ◽  
pp. 2129-2141 ◽  
Author(s):  
Sylvain Monteux ◽  
James T. Weedon ◽  
Gesche Blume-Werry ◽  
Konstantin Gavazov ◽  
Vincent E. J. Jassey ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Nils Kristian Prenzler ◽  
Eugen Kludt ◽  
Thomas Giere ◽  
Rolf Salcher ◽  
Thomas Lenarz ◽  
...  

Objectives/Hypothesis. Comparing long term stability of the Middle Ear Transducers (MET) of the 1st generation T1 (Otologics LLC) with the current generation T2 (Cochlear Ltd.) in all our clinical cases with standard incus coupling. Study Design. Retrospective chart review. Methods. 52 ears implanted with a MET device between 2008 and 2016 were analyzed retrospectively. All patients suffered from sensorineural hearing loss and the actuator was coupled to the body of the incus (standard coupling). 23 ears were implanted with the transducer T1 (Otologics LLC) between 2008 and 2011 and 29 ears were implanted with the current transducer T2 since 2011 (Otologics LLC/Cochlear Ltd.). Latest available in situ and bone conduction (BC) thresholds were exploited for a follow-up period of up to 7 years after first fitting. Long term stability of coupling and actuator performance was evaluated by tracking differences between in situ and BC thresholds. Results. In the T1 group, 9 out of 23 implants were still used by the patients at their last follow-up visit (average observation time 3.7 yrs.; min 1.0 yrs., max 7.4 yrs.). In 9 patients a technical failure identified by a decrease of in situ threshold of more than 15 dB compared to BC thresholds [Δ (in situ – BC)] lead to non-usage of the implant and 7 explantations. Five other explantations occurred due to medical reasons such as BC threshold decrease, infection, or insufficient speech intelligibility with the device. In the T2 group, 23 out of 29 implants were still used at the most current follow-up visit (average observation time 3.3 yrs.; min 1.0 yrs., max 4.8 yrs.). No technical failures were observed up to more than 4 years after implantation. Five T2 patients discontinued using the device due to insufficient benefit; two of these patients were explanted. One patient had to be explanted before the activation of the device due to disorders of wound healing. Nevertheless, a small but significant decrease of hearing loss corrected coupling efficiency [Δ (in situ – BC)] was seen in the T2 group. Conclusions. In contrast to the T1 transducers of the earlier generation of MET systems where technical failures occurred frequently, no technical failures were detected after 29 implantations with the current T2 transducers. However, a small but significant decline of transmission efficiency was observable even in the T2 implanted group.


2020 ◽  
Vol 745 ◽  
pp. 140989
Author(s):  
Jinhee Park ◽  
Jinsung An ◽  
Hyeonyong Chung ◽  
Sang Hyun Kim ◽  
Kyoungphile Nam

2013 ◽  
Vol 740-742 ◽  
pp. 545-548 ◽  
Author(s):  
Daniel B. Habersat ◽  
Aivars J. Lelis ◽  
Ronald Green ◽  
Mooro El

Since power devices such as DMOSFETs will operate at higher temperatures with accelerated degradation mechanisms, it is essential to understand the effects of typical operating conditions for power electronics applications. We have found that SiC MOSFETs when gate-biased at 150 °C show an increasing charge pumping current over time, suggesting that interface traps (or perhaps near-interface oxide traps) are being created under these conditions. This trapping increase occurs slightly above linear-with-log-time and mimics previously observed threshold voltage instabilities, though a causal relationship has not yet been determined. We found the charge trapping after 104 s of BTS increased at a rate of 1x1011 cm-2/dec for NBTS (-3 MV/cm), 0.7x1011 cm-2/dec for PBTS (3 MV/cm), and 0.3x1011 cm-2/dec when grounded. The observed increase in charge trapping has negative implications for the long term stability and reliability of SiC MOS devices under operating conditions.


2019 ◽  
Vol 13 (8) ◽  
pp. 2140-2142
Author(s):  
Sylvain Monteux ◽  
James T. Weedon ◽  
Gesche Blume-Werry ◽  
Konstantin Gavazov ◽  
Vincent E. J. Jassey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document