scholarly journals Breakdown of semiclassical description of thermoelectricity in near-magic angle twisted bilayer graphene

Author(s):  
Bhaskar Ghawri ◽  
Phanibhusan Mahapatra ◽  
Manjari Garg ◽  
Shinjan Mandal ◽  
Saisab Bhowmik ◽  
...  

Abstract The planar assembly of twisted bilayer graphene (tBLG) hosts a multitude of interaction-driven phases when the relative rotation is close to the magic angle (θ = 1.1°). This includes correlation-induced ground states that reveal spontaneous symmetry breaking at low temperature, as well as the possibility of non-Fermi liquid (NFL) excitations. However, experimentally, the manifestation of NFL effects in transport properties of twisted bilayer graphene remains ambiguous. Here we report simultaneous measurements of electrical resistivity (ρ) and thermoelectric power (S) in tBLG for several twist angles between θ ≈ 1.0°-1.7°. We observe an emergent violation of the semiclassical Mott relation in the form of excess S close to half-filling for θ≈1.6° that vanishes for ≥ 2°. The excess S (≈2 μV/K at low temperatures T ≈10 K at θ≈1.6°) persists up to ≈ 40 K and is accompanied by metallic T-linear ρ with transport scattering rate (1/τ) of near-Planckian magnitude 1/τ ≈ k_BT/h_bar. Closer to θ_m, the excess S was also observed for fractional band-filling (ν≈ 0.5). The combination of non-trivial electrical transport and violation of Mott relation provides compelling evidence of NFL physics intrinsic to tBLG.

Author(s):  
Folkert K. de Vries ◽  
Elías Portolés ◽  
Giulia Zheng ◽  
Takashi Taniguchi ◽  
Kenji Watanabe ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrej Pustogow ◽  
Yohei Saito ◽  
Anja Löhle ◽  
Miriam Sanz Alonso ◽  
Atsushi Kawamoto ◽  
...  

AbstractLandau suggested that the low-temperature properties of metals can be understood in terms of long-lived quasiparticles with all complex interactions included in Fermi-liquid parameters, such as the effective mass m⋆. Despite its wide applicability, electronic transport in bad or strange metals and unconventional superconductors is controversially discussed towards a possible collapse of the quasiparticle concept. Here we explore the electrodynamic response of correlated metals at half filling for varying correlation strength upon approaching a Mott insulator. We reveal persistent Fermi-liquid behavior with pronounced quadratic dependences of the optical scattering rate on temperature and frequency, along with a puzzling elastic contribution to relaxation. The strong increase of the resistivity beyond the Ioffe–Regel–Mott limit is accompanied by a ‘displaced Drude peak’ in the optical conductivity. Our results, supported by a theoretical model for the optical response, demonstrate the emergence of a bad metal from resilient quasiparticles that are subject to dynamical localization and dissolve near the Mott transition.


2D Materials ◽  
2022 ◽  
Author(s):  
Tiago Campolina Barbosa ◽  
Andreij C. Gadelha ◽  
Douglas A. A. Ohlberg ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
...  

Abstract In this work, we study the Raman spectra of twisted bilayer graphene samples as a function of their twist-angles (θ), ranging from 0.03º to 3.40º, where local θ are determined by analysis of their associated moiré superlattices, as imaged by scanning microwave impedance microscopy. Three standard excitation laser lines are used (457, 532, and 633 nm wavelengths), and the main Raman active graphene bands (G and 2D) are considered. Our results reveal that electron-phonon interaction influences the G band's linewidth close to the magic angle regardless of laser excitation wavelength. Also, the 2D band lineshape in the θ < 1º regime is dictated by crystal lattice and depends on both the Bernal (AB and BA) stacking bilayer graphene and strain soliton regions (SP) [1]. We propose a geometrical model to explain the 2D lineshape variations, and from it, we estimate the SP width when moving towards the magic angle.


Nature ◽  
2019 ◽  
Vol 573 (7772) ◽  
pp. 91-95 ◽  
Author(s):  
Yuhang Jiang ◽  
Xinyuan Lai ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
Kristjan Haule ◽  
...  

2020 ◽  
Vol 101 (23) ◽  
Author(s):  
Shin-Ming Huang ◽  
Yi-Ping Huang ◽  
Ting-Kuo Lee

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jong Yeon Lee ◽  
Eslam Khalaf ◽  
Shang Liu ◽  
Xiaomeng Liu ◽  
Zeyu Hao ◽  
...  

AbstractTwo graphene monolayers twisted by a small magic angle exhibit nearly flat bands, leading to correlated electronic states. Here we study a related but different system with reduced symmetry - twisted double bilayer graphene (TDBG), consisting of two Bernal stacked bilayer graphenes, twisted with respect to one another. Unlike the monolayer case, we show that isolated flat bands only appear on application of a vertical displacement field. We construct a phase diagram as a function of twist angle and displacement field, incorporating interactions via a Hartree-Fock approximation. At half-filling, ferromagnetic insulators are stabilized with valley Chern number $${C}_{{\rm{v}}}=\pm 2$$Cv=±2. Upon doping, ferromagnetic fluctuations are argued to lead to spin-triplet superconductivity from pairing between opposite valleys. We highlight a novel orbital effect arising from in-plane fields plays an important role in interpreting experiments. Combined with recent experimental findings, our results establish TDBG as a tunable platform to realize rare phases in conventional solids.


2020 ◽  
Vol 102 (15) ◽  
Author(s):  
A. O. Sboychakov ◽  
A. V. Rozhkov ◽  
A. L. Rakhmanov ◽  
Franco Nori

Sign in / Sign up

Export Citation Format

Share Document