scholarly journals Dynamic history of the inner core constrained by seismic anisotropy

2021 ◽  
Author(s):  
Daniel Frost ◽  
Marine Lasbleis ◽  
Brian Chandler ◽  
Barbara Romanowicz

Abstract Progressive crystallisation of Earth's inner core over geological times drives convection in the outer core and the generation of the Earth’s magnetic field. Resolving the rate and pattern of inner core growth is thus crucial to understanding the evolution of the geodynamo. The growth history of Earth’s inner core is likely recorded in the distribution and strength of seismic anisotropy arising from deformation texturing constrained by boundary conditions at the inner-core solid-fluid boundary. Travel times of seismic body waves indicate that seismic anisotropy increases with depth. Here we find that the strongest anisotropy is offset from Earth's rotation axis. Using geodynamic growth models and mineral physics calculations, we simulate the development of inner core anisotropy in a self-consistent manner. We show for the first time that an inner core model composed of hexagonally close-packed iron-nickel alloy, deformed by a combination of preferential equatorial growth and slow translation can match the seismic observations without requiring the introduction of hemispheres with sharp boundaries. We find a model of the inner core growth history compatible with external constraints from outer core dynamics, supporting arguments for a relatively young inner core (~0.5-1.5 Ga) and a viscosity >1018 Pa-s.

2020 ◽  
Vol 223 (2) ◽  
pp. 1230-1246
Author(s):  
Henry Brett ◽  
Arwen Deuss

SUMMARY We measure the seismic anisotropy of the inner core using PKPbc-PKPdf and PKPab-PKPdf differential traveltimes, as a function of the angle ζ between the Earth’s rotation axis and the ray path in the inner core. Previous research relied heavily on body waves originating in the South Sandwich Islands (SSI) and travelling to seismic stations in Alaska to sample inner core velocities with low ζ (polar paths). These SSI polar paths are problematic because they have anomalous travel time anomalies, there are no ultra-polar SSI paths with ζ < 20° and they only cover a small part of the inner core. Here we improve constraints on inner core anisotropy using recently installed seismic stations at high latitudes, especially in the Antarctic, allowing us to measure ultra-polar paths with ζ ranging from 20°–5°. Our new data show that the SSI’s polar events are fast but still within the range of velocities measured from ray paths originating elsewhere. We further investigate the effect of mantle structure on our data set finding that the SSI data are particularly affected by fast velocities underneath the SSI originating from the subducted South Georgia slab, which is currently located just above the core mantle boundary. This fast velocity region results in mantle structure being misinterpreted as inner core structure and we correct for this using a P-wave tomographic model. We also analyse the effect of velocity changes on the ray paths within the inner core and find that faster velocities significantly change the ray path resulting in the ray travelling deeper into the inner core and spending more time in the inner core. To remove this effect, we propose a simple but effective method to correct each event-station pair for the velocity-dependent ray path changes in the inner core, producing a more reliable fractional traveltime measurement. Combining the new ultra-polar data with mantle and ray path corrections results in a more reliable inner core anisotropy measurement and an overall measured anisotropy of 1.9–2.3 per cent for the whole inner core. This is lower than previous body wave studies (3 per cent anisotropy) and in better agreement with the value of inner core anisotropy measured by normal modes (2 per cent anisotropy). We also identify regional variation of anisotropic structure in the top 500 km of the inner core, which appears to be more complex than simple hemispherical variations. These regional variations are independent of the SSI data and are still present when these data are excluded. We also find a potential innermost inner core with a radius of 690 km and stronger anisotropy.


2014 ◽  
Vol 346 (5-6) ◽  
pp. 101-109 ◽  
Author(s):  
Renaud Deguen ◽  
Peter Olson ◽  
Evan Reynolds

Nature ◽  
2008 ◽  
Vol 454 (7205) ◽  
pp. 758-761 ◽  
Author(s):  
Julien Aubert ◽  
Hagay Amit ◽  
Gauthier Hulot ◽  
Peter Olson

2021 ◽  
Author(s):  
Daniel A. Frost ◽  
Marine Lasbleis ◽  
Brian Chandler ◽  
Barbara Romanowicz

Author(s):  
Hrvoje Tkalčić ◽  
Sheng Wang ◽  
Thanh-Son Phạm

Understanding how Earth's inner core (IC) develops and evolves, including fine details of its structure and energy exchange across the boundary with the liquid outer core, helps us constrain its age, relationship with the planetary differentiation, and other significant global events throughout Earth's history, as well as the changing magnetic field. Since its discovery in 1936 and the solidity hypothesis in 1940, Earth's IC has never ceased to inspire geoscientists. However, while there are many seismological observations of compressional waves and normal modes sensitive to the IC's compressional and shear structure, the shear waves that provide direct evidence for the IC's solidity have remained elusive and have been reported in only a few publications. Further advances in the emerging correlation-wavefield paradigm, which explores waveform similarities, may hold the keys to refined measurements of all inner-core shear properties, informing dynamical models and strengthening interpretations of the IC's anisotropic structure and viscosity. ▪ What are the shear properties of the inner core, such as the shear-wave speed, shear modulus, shear attenuation, and shear-wave anisotropy? Can the shear properties be measured seismologically and confirmed experimentally? Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Author(s):  
Sandra Beiers ◽  
Christine Thomas

<p>The seismological exploration of the Earth’s inner core has revealed some structural complexities such as seismic anisotropy and hemispherical separation. Investigating the travel times of PKP waves from at least two different ray paths, a polar and an equatorial one, is one of the commonly used methods to probe the inner core’s anisotropy. Since the waves are traversing anomalous structures in the lowermost mantle before entering the core, these heterogeneities have to be taken into account when investigating anisotropy in the inner core.</p><p>In this study we use data from an equatorial path with events from Indonesia recorded in Morocco and a nearly polar one with earthquakes in New Zealand recorded in England. The two waves used in our study, PKPdf and PKPab, both propagate through mantle and outer core and PKPab additionally traverses the inner core. Within this work, we do not only analyse the travel times of the waves but rather investigate their deviations from the originally assumed path along with their incidence angle. This is done with the methods of array seismology, mainly its two parameters slowness and backazimuth.</p><p>The results of this study reveal opposite deviations of slowness and backazimuth of the polar in contrast to the equatorial path. While the polar waves travel shallower and closer to North, the equatorial waves propagate deeper and farther from North than predicted by ak135. Additionally we observe hemispherical differences between waves that sample the eastern and the ones that sample the western hemisphere for both ray paths, PKPdf and PKPab, which leads us to the assumption that the deviations are not caused by the inner core but are rather due to mantle structures.</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Pirooz Mohazzabi ◽  
John D. Skalbeck

The recently verified superrotation of Earth’s inner core is examined and a new model is presented which is based on the tidal despinning of the mantle and the viscosity of the outer core. The model also takes into account other damping mechanisms arising from the inner core superrotation such as magnetic and gravitational coupling as well as contribution from eddy viscosity in the outer core. The effective viscosity obtained in this model confirms a previously well constrained value of about 103 Pa s. In addition, the model shows that the currently measured superrotation of the inner core must be almost exactly equal to its asymptotic or steady-state value. The effect of extraterrestrial impacts is also investigated, and it is shown that perturbations due to such impacts can only persist over a short geological time.


Sign in / Sign up

Export Citation Format

Share Document