earth’s inner core
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 48)

H-INDEX

51
(FIVE YEARS 4)

Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 202-205
Author(s):  
Richard G. Kraus ◽  
Russell J. Hemley ◽  
Suzanne J. Ali ◽  
Jonathan L. Belof ◽  
Lorin X. Benedict ◽  
...  

Terapascal iron-melting temperature The pressure and temperature conditions at which iron melts are important for terrestrial planets because they determine the size of the liquid metal core, an important factor for understanding the potential for generating a radiation-shielding magnetic field. Kraus et al . used laser-driven shock to determine the iron-melt curve up to a pressure of 1000 gigapascals (see the Perspective by Zhang and Lin). This value is about three times that of the Earth’s inner core boundary. The authors found that the liquid metal core lasted the longest for Earth-like planets four to six times larger in mass than the Earth. —BG


2022 ◽  
Vol 119 (2) ◽  
pp. e2113059119
Author(s):  
Yang Sun ◽  
Feng Zhang ◽  
Mikhail I. Mendelev ◽  
Renata M. Wentzcovitch ◽  
Kai-Ming Ho

The Earth's inner core started forming when molten iron cooled below the melting point. However, the nucleation mechanism, which is a necessary step of crystallization, has not been well understood. Recent studies have found that it requires an unrealistic degree of undercooling to nucleate the stable, hexagonal, close-packed (hcp) phase of iron that is unlikely to be reached under core conditions and age. This contradiction is referred to as the inner core nucleation paradox. Using a persistent embryo method and molecular dynamics simulations, we demonstrate that the metastable, body-centered, cubic (bcc) phase of iron has a much higher nucleation rate than does the hcp phase under inner core conditions. Thus, the bcc nucleation is likely to be the first step of inner core formation, instead of direct nucleation of the hcp phase. This mechanism reduces the required undercooling of iron nucleation, which provides a key factor in solving the inner core nucleation paradox. The two-step nucleation scenario of the inner core also opens an avenue for understanding the structure and anisotropy of the present inner core.


Author(s):  
Hrvoje Tkalčić ◽  
Sheng Wang ◽  
Thanh-Son Phạm

Understanding how Earth's inner core (IC) develops and evolves, including fine details of its structure and energy exchange across the boundary with the liquid outer core, helps us constrain its age, relationship with the planetary differentiation, and other significant global events throughout Earth's history, as well as the changing magnetic field. Since its discovery in 1936 and the solidity hypothesis in 1940, Earth's IC has never ceased to inspire geoscientists. However, while there are many seismological observations of compressional waves and normal modes sensitive to the IC's compressional and shear structure, the shear waves that provide direct evidence for the IC's solidity have remained elusive and have been reported in only a few publications. Further advances in the emerging correlation-wavefield paradigm, which explores waveform similarities, may hold the keys to refined measurements of all inner-core shear properties, informing dynamical models and strengthening interpretations of the IC's anisotropic structure and viscosity. ▪ What are the shear properties of the inner core, such as the shear-wave speed, shear modulus, shear attenuation, and shear-wave anisotropy? Can the shear properties be measured seismologically and confirmed experimentally? Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Lif Jacobsen

Abstract. Celebrated for her 1936 discovery of the Earth’s inner core, seismologist Inge Lehmann (1888–1993) has often been portrayed as a trailblazing female scientist, unwilling to accept discrimination in her pursuit of an academic profession. Yet, a close reading of her experiences suggests that Lehmann faced severe restrictions early on in her career. Only by being pragmatic about her situation did she successfully establish herself as a professional scientist. Having attended a progressive co-educational school before studying mathematics at the University of Copenhagen, Lehmann had little direct experience of gender discrimination. After receiving her bachelor’s degree, she entered Cambridge University in 1911, along with Niels Bohr, but found herself unprepared for the gendered social segregation practiced there. Exhausted from overwork, Lehman abandoned her studies and returned to Denmark. Over the next six years, she came to understand how severely her gender limited her career options. In 1918, Inge Lehman returned to the University of Copenhagen to complete her studies, and became a teaching assistant for a professor of actuarial science in 1923. Because her chances for obtaining a scientific post at the university were slim, she joined Professor Niels Erik Nørlund in his efforts to reform the Danish Geodetic Service. In 1928, Professor Nørlund rewarded Lehmann's voluntary change of academic discipline from mathematics to seismology by appoint her as Director of the Seismology Department.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Daijo Ikuta ◽  
Eiji Ohtani ◽  
Naohisa Hirao

AbstractThe Earth’s inner core comprises iron-nickel alloys with light elements. However, there is no clarity on the phase properties of these alloys. Here we show phase relations and equations of state of iron–nickel and iron–nickel–silicon alloys up to 186 gigapascals and 3090 kelvin. An ordered derivative of the body-centred cubic structure (B2) phase was observed in these alloys. Results show that nickel and silicon influence the stability field associated with the two-phase mixture of B2 and hexagonal close-packed phases under core conditions. The two-phase mixture can give the inner core density of the preliminary reference Earth model. The compressional wave velocity of the two-phase mixture under inner core conditions is consistent with that of the preliminary reference Earth model. Therefore, a mixture of B2 and hexagonal close-packed phases may exist in the inner core and accounts for the seismological properties of the inner core such as density and velocity deficits.


2021 ◽  
Author(s):  
Sheng Wang ◽  
Hrvoje Tkalčić

Earth’s inner core anisotropy is widely used to infer the deep Earth's evolution and present dynamics. Many compressional-wave anisotropy models have been proposed based on seismological observations. In contrast, inner-core shear-wave (J-wave) anisotropy – on a par with the compressional-wave anisotropy – has been elusive. Here we present a new class of the J-wave anisotropy observations utilizing earthquake coda-correlation wavefield. We establish that the coda-correlation feature I2-J, sensitive to J-wave speed, exhibits time and amplitude changes when sampling the inner core differently. J-waves traversing the inner core near its center travel faster for the oblique than equatorial angles relative to the Earth’s rotation axis by at least ~5 s. The simplest explanation is the J-wave cylindrical anisotropy with a minimum strength of ~0.8%, formed through the lattice-preferred-orientation mechanism of iron. Although we cannot uniquely determine its stable iron phase, the new observations rule out one of the body-centered-cubic iron models.


2021 ◽  
Vol 568 ◽  
pp. 117014
Author(s):  
Wenzhong Wang ◽  
Yunguo Li ◽  
John P. Brodholt ◽  
Lidunka Vočadlo ◽  
Michael J. Walter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document