scholarly journals Bone Marrow Mesenchymal Stem Cells Transplantation Combined with Exercise Training Synergistically Promoted Functional Recovery After Spinal Cord Injury.

Author(s):  
Xin Sun ◽  
Liyi Huang ◽  
Chenying Fu ◽  
Lijuan Li ◽  
Lu Wang ◽  
...  

Abstract Background: Spinal cord injury (SCI) typically results in a devastating loss of neurological function below the level of injury. Although many strategies show considerable potential for SCI treatment, the therapeutic efficacy is limited. Here, we used a mouse model of thoracic contusive SCI to investigate whether the combination of bone marrow mesenchymal stem cells (BMMSCs) transplantation and exercise training has a synergistic effect on functional restoration. Methods: BMMSCs were injected directly into the contusion epicenter immediately after SCI, and the mice started treadmill training (TMT) 3 days after SCI. Locomotor function was evaluated by the Basso Mouse Scale (BMS), horizontal ladder test, and footprint analysis. Histological examination, transmission electron microscopy observation, immunofluorescence staining and western blotting were performed 8 weeks after SCI to further explore the potential mechanism of the synergistic repair effect. Results: The combination of BMMSCs transplantation and TMT showed the best therapeutic effect on motor function recovery compared with the other treatment groups. Further investigations revealed that the combination of BMMSCs transplantation and TMT markedly reduced fibrotic scar tissue, protected neurons, promoted axon and myelin regeneration, and increased synapse formation to a larger extent than either TMT or BMMSCs transplantation alone. Additionally, the synergistic effects of BMMSCs transplantation and TMT on SCI recovery occurred via activation of the PI3K/AKT/mTOR pathway. Conclusions: These findings suggest that BMMSCs transplantation combined with exercise training represents a promising combinatorial strategy to facilitate clinically meaningful recovery after SCI.

2021 ◽  
pp. 096032712110033
Author(s):  
Liying Fan ◽  
Jun Dong ◽  
Xijing He ◽  
Chun Zhang ◽  
Ting Zhang

Spinal cord injury (SCI) is one of the most common destructive injuries, which may lead to permanent neurological dysfunction. Currently, transplantation of bone marrow mesenchymal stem cells (BMSCs) in experimental models of SCI shows promise as effective therapies. BMSCs secrete various factors that can regulate the microenvironment, which is called paracrine effect. Among these paracrine substances, exosomes are considered to be the most valuable therapeutic factors. Our study found that BMSCs-derived exosomes therapy attenuated cell apoptosis and inflammation response in the injured spinal cord tissues. In in vitro studies, BMSCs-derived exosomes significantly inhibited lipopolysaccharide (LPS)-induced PC12 cell apoptosis, reduced the secretion of pro-inflammatory factors including tumor necrosis factor (TNF)-α and IL (interleukin)-1β and promoted the secretion of anti-inflammatory factors including IL-10 and IL-4. Moreover, we found that LPS-induced protein expression of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear transcription factor-κB (NF-κB) was significantly downregulated after treatment with BMSCs-derived exosomes. In in vivo studies, we found that hindlimb motor function was significantly improved in SCI rats with systemic administration of BMSCs-derived exosomes. We also observed that the expression of pro-apoptotic proteins and pro-inflammatory factors was significantly decreased, while the expression of anti-apoptotic proteins and anti-inflammatory factors were upregulated in SCI rats after exosome treatment. In conclusion, BMSCs-derived exosomes can inhibit apoptosis and inflammation response induced by injury and promote motor function recovery by inhibiting the TLR4/MyD88/NF-κB signaling pathway, which suggests that BMSCs-derived exosomes are expected to become a new therapeutic strategy for SCI.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Li ◽  
Heyangzi Li ◽  
Simin Cai ◽  
Shi Bai ◽  
Huabo Cai ◽  
...  

Abstract Background Recent studies demonstrated that autologous mitochondria derived from bone marrow mesenchymal stem cells (BMSCs) might be valuable in the treatment of spinal cord injury (SCI). However, the mechanisms of mitochondrial transfer from BMSCs to injured neurons are not fully understood. Methods We modified BMSCs by CD157, a cell surface molecule as a potential regulator mitochondria transfer, then transplanted to SCI rats and co-cultured with OGD injured VSC4.1 motor neuron. We detected extracellular mitochondrial particles derived from BMSCs by transmission electron microscope and measured the CD157/cyclic ADP-ribose signaling pathway-related protein expression by immunohistochemistry and Western blotting assay. The CD157 ADPR-cyclase activity and Fluo-4 AM was used to detect the Ca2+ signal. All data were expressed as mean ± SEM. Statistical analysis was analyzed by GraphPad Prism 6 software. Unpaired t-test was used for the analysis of two groups. Multiple comparisons were evaluated by one-way ANOVA or two-way ANOVA. Results CD157 on BMSCs was upregulated when co-cultured with injured VSC4.1 motor neurons. Upregulation of CD157 on BMSCs could raise the transfer extracellular mitochondria particles to VSC4.1 motor neurons, gradually regenerate the axon of VSC4.1 motor neuron and reduce the cell apoptosis. Transplantation of CD157-modified BMSCs at the injured sites could significantly improve the functional recovery, axon regeneration, and neuron apoptosis in SCI rats. The level of Ca2+ in CD157-modified BMSCs dramatically increased when objected to high concentration cADPR, ATP content, and MMP of BMSCs also increased. Conclusion The present results suggested that CD157 can regulate the production and transfer of BMSC-derived extracellular mitochondrial particles, enriching the mechanism of the extracellular mitochondrial transfer in BMSCs transplantation and providing a novel strategy to improve the stem cell treatment on SCI.


2020 ◽  
Author(s):  
Jing Li ◽  
Heyangzi Li ◽  
Simin Cai ◽  
Shi Bai ◽  
Huabo Cai ◽  
...  

Abstract Background: Recent studies demonstrated that autologous mitochondria derived from bone marrow mesenchymal stem cells (BMSCs) might be valuable in the treatment of spinal cord injury (SCI). However, the mechanisms of mitochondrial transfer from BMSCs to injured neurons are not fully understood. Methods: We modified BMSCs by CD-157, a cell surface molecule as a potential regulator mitochondria transfer, then transplanted to SCI rats and co-cultured with OGD injured VSC4.1 motor neuron. We detected extracellular mitochondrial particles derived from BMSCs by transmission electron microscope and measured the CD157/cyclic ADP-ribose signaling pathway related protein expression by immunohistochemistry and Western blotting assay. The CD157 ADPR-cyclase activity and Fluo-4 AM was used to detect the Ca2+ signal. All data were expressed as mean ± SEM. Statistical analysis was analyzed by GraphPad Prism 6 software. Unpaired t-test was used for the analysis of two groups. Multiple comparisons were evaluated by one-way ANOVA or two-way ANOVA.Results: CD157 on BMSCs was upregulated when co-cultured with injured VSC4.1 motor neurons. Upregulation of CD157 on BMSCs could raise the transfer extracellular mitochondria particles to VSC4.1 motor neurons, gradually regenerate the axon of VSC4.1 motor neuron and reduce the cell apoptosis. Transplantation of CD157 modified BMSCs at the injured sites could significantly improve the functional recovery, axon regeneration and neuron apoptosis in SCI rats. The level of Ca2+ in CD157 modified BMSCs dramatically increased and when objected to high concentration cADPR, ATP content and MMP of BMSCs also increased.Conclusion: This study evidences that CD157 can regulate the produce and transfer of BMSCs-derived extracellular mitochondrial particles, enriching the mechanism of the extracellular mitochondrial transfer in BMSCs transplantation and providing a novel strategy to improve the stem cell treatment on SCI.


Theranostics ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 2017-2035 ◽  
Author(s):  
Heyangzi Li ◽  
Chao Wang ◽  
Teng He ◽  
Tengfei Zhao ◽  
Ying-ying Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document