scholarly journals Divergent Rhodium-Catalyzed Electrochemical Vinylic C–H Annulation of Acrylamides with Alkynes

2020 ◽  
Author(s):  
Yi-Kang Xing ◽  
Xin-Ran Chen ◽  
Qi-Liang Yang ◽  
Shuoqing Zhang ◽  
Haiming Guo ◽  
...  

Abstract A Rh-catalyzed electrochemical vinylic C–H annulation of acrylamides with alkynes has been developed in an undivided cell, affording cyclic products in good to excellent yield. Divergent syntheses of α-pyridones and cyclic imidates are accomplished by employing N-phenyl acrylamides and N-tosyl acrylamides as substrates, respectively. Additionally, excellent regioselectivities are achieved when using unsymmetrical alkynes. This electrochemical process is environmentally benign compared to traditional transition metal-catalyzed C–H annulations because it avoids the use of stoichiometric metal oxidants. DFT calculations elucidated the reaction mechanism and origins of substituent-controlled chemoselectivity. The sequential C–H activation and alkyne insertion under rhodium catalysis leads to the seven-membered ring vinyl-rhodium intermediate. This intermediate undergoes either the classic neutral concerted reductive elimination to produce α-pyridones, or the ionic stepwise pathway to produce cyclic imidates.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi-Kang Xing ◽  
Xin-Ran Chen ◽  
Qi-Liang Yang ◽  
Shuo-Qing Zhang ◽  
Hai-Ming Guo ◽  
...  

Abstractα-Pyridones and α-pyrones are ubiquitous structural motifs found in natural products and biologically active small molecules. Here, we report an Rh-catalyzed electrochemical vinylic C–H annulation of acrylamides with alkynes, affording cyclic products in good to excellent yield. Divergent syntheses of α-pyridones and cyclic imidates are accomplished by employing N-phenyl acrylamides and N-tosyl acrylamides as substrates, respectively. Additionally, excellent regioselectivities are achieved when using unsymmetrical alkynes. This electrochemical process is environmentally benign compared to traditional transition metal-catalyzed C–H annulations because it avoids the use of stoichiometric metal oxidants. DFT calculations elucidated the reaction mechanism and origins of substituent-controlled chemoselectivity. The sequential C–H activation and alkyne insertion under rhodium catalysis leads to the seven-membered ring vinyl-rhodium intermediate. This intermediate undergoes either the classic neutral concerted reductive elimination to produce α-pyridones, or the ionic stepwise pathway to produce cyclic imidates.


2020 ◽  
Vol 92 (1) ◽  
pp. 151-166 ◽  
Author(s):  
Luís M. T. Frija ◽  
Bruno G. M. Rocha ◽  
Maxim L. Kuznetsov ◽  
Lília I. L. Cabral ◽  
M. Lurdes S. Cristiano ◽  
...  

AbstractA new (tetrazole-saccharin)nickel complex is shown to be a valuable catalyst for the hydrosilative reduction of aldehydes under microwave radiation at low temperatures. With typical 1 mol% content of the catalyst (microwave power range of 5–15 W) most reactions are complete within 30 min. The Ni(II)-catalyzed reduction of aldehydes, with a useful scope, was established for the first time by using this catalyst, and is competitive with the most effective transition-metal catalysts known for such transformation. The catalyst reveals tolerance to different functional groups, is air and moisture stable, and is readily prepared in straightforward synthetic steps. Supported by experimental data and DFT calculations, a plausible reaction mechanism involving the new catalytic system is outlined.


2020 ◽  
Vol 49 (5) ◽  
pp. 1487-1516 ◽  
Author(s):  
Tianxiao Jiang ◽  
Haocheng Zhang ◽  
Yongzheng Ding ◽  
Suchen Zou ◽  
Rui Chang ◽  
...  

This review summarizes transition-metal catalyzed reactions with reductive elimination between covalent ligands and dative ligands as the key elementary step.


1999 ◽  
Vol 54 (6) ◽  
pp. 725-733 ◽  
Author(s):  
M. Fernanda N. N. Carvalho ◽  
Armando J. L. Pombeiro ◽  
Gabriele Wagner ◽  
Bjørn Pedersen ◽  
Rudolf Herrmann

Platinum(II) catalyzes the isomerization of camphor sulfonamide diynes in a cascade reaction involving annulation of a five-membered ring to the camphor skeleton, ring-enlargement by C-C bond cleavage, reduction of sulfur(VI) to sulfur(IV), and oxidation of a hydroxy group to a ketone. The reactions of the diynes with other transition metal compounds were also studied. Copper, gold and rhenium give final products similar to those obtained with simple Brønsted acids or halogens, mainly by annulation o f a five-membered ring to the camphor moiety, accompanied by reduction of a sulfonamide to a sulfinamide group, but lacking the ring-enlargement step. Palladium(II) occupies an intermediate position as both types o f products are obtained. The reaction mechanism and intermediates are discussed


Synlett ◽  
2021 ◽  
Author(s):  
Margarita Escudero-Casao ◽  
Giulia Licini ◽  
Manuel Orlandi

The transition metal catalyzed α-arylation of carbonyl compounds was first reported by Buchwald and Hartwig in 1997. This transformation has been used and studied extensively over the last two decades. Enantioselective variants were also developed that allow for controlling the product stereochemistry. However, these suffer several limitations in the context of formation of tertiary stereocenters. Presented here is our group’s contribution to this research area. The chiral Cu-bis(phosphine) dioxides catalytic system that we reported allowed accessing the enantioselective α-arylation of ketones that were not suitable for this transformation before in good yields and er up to 97.5:2.5. Preliminary insight and speculation concerning the reaction mechanism involving the unusual pairing of bis(phosphine) dioxides with transition metal catalysts is also given.


RSC Advances ◽  
2016 ◽  
Vol 6 (99) ◽  
pp. 96762-96767 ◽  
Author(s):  
Krishna K. Sharma ◽  
Meenakshi Mandloi ◽  
Neha Rai ◽  
Rahul Jain

A transition metal-catalyzed, environmentally benign, rapid and cost-effective method for the N-(hetero)arylation of zwitterionic amino acids in water is reported.


2011 ◽  
Vol 83 (3) ◽  
pp. 495-506 ◽  
Author(s):  
Moisés Gulías ◽  
Fernando López ◽  
José L. Mascareñas

We present a compilation of methodologies developed in our laboratories to assemble polycyclic structures containing small- and medium-sized cycles, relying on the use of transition-metal-catalyzed (TMC) cycloadditions. First, we discuss the use of alkylidenecyclopropanes (ACPs) as 3C-atom partners, in particular in their Pd-catalyzed (3 + 2) cycloadditions with alkynes, alkenes, and allenes, reactions that lead to cyclopentane-containing polycyclic products in excellent yields. Then, we present the expansion of this chemistry to a (4 + 3) annulation with conjugated dienes, and to inter- and intramolecular (3 + 2 + 2) cycloadditions using external alkenes as additional 2C-π-systems. These reactions allow the preparation of different types of polycyclic structures containing cycloheptene rings, the topology of the products depending on the use of Pd or Ni catalysts. Finally, we include our more recent discoveries on the development of (4 + 3) and (4 + 2) intramolecular cyclo-additions of allenes and dienes, promoted by Pt and Au catalysts, and discuss mechanistic insights supported by experimental and density functional theory (DFT) calculations. An enantioselective version of the (4 + 2) cycloaddition with phosphoramidite Au(I) catalysts is also presented.


2021 ◽  
Author(s):  
Guoxue He ◽  
Jinyu Ma ◽  
Jianhui Zhou ◽  
Chunpu Li ◽  
Hong Liu ◽  
...  

A facile method access to indanones was developed under metal- and additive-free conditions in which L-proline served as efficient and environmentally benign catalysts. Compared with previous indanones synthesis by transition-metal-catalyzed...


Sign in / Sign up

Export Citation Format

Share Document