scholarly journals Cognitive Computing Integrated Methodology For Smart Decision Making And Problem-Solving

Author(s):  
Jingyuan Liu

Abstract Cognitive computing is the field of intelligent computational study that imitates the brain process for computational intelligence. Decision-making is part of the cognitive process in which opportunities based on certain criteria are selected for a course of action. The choice is generally made using the intelligent assistance system that can turn human decision-making into Artificial Intelligence, system engineering, machine learning approaches. Many complicated real-world problems have been solved by the desire to replicate human intelligence into robots and progress in artificial intelligent technologies. Autonomous systems with machine cognition continuously develop by using enormous data volume and processing power. The cognitive computing system uses skill and awareness derived from knowledge and intelligent decision-making. In this paper, the cognitive computing-based human speech recognition framework (CC-HSRF) takes advantage of next-generation technologies to assist smart decision-making effectively. The proposed methods overview cognitive calculation and its historical perspectives, followed by several strategies to implement algorithms for intelligent decision-making using machine learning. Methods for effective knowledge processing are explored based on cognitive computing models such as Object-Attribute-Relation (OAR). It offers visual and cognitive analytics information, highlighting the framework of conceptual vision and its difficulties. This framework aims to increase the quality of artificial intelligent decision-making based on human perceptions, comprehensions, and actions to reduce business mistakes in the real world and ensure right, accurate, informed, and timely human decisions.

Author(s):  
Alessandro Simeone ◽  
Yunfeng Zeng ◽  
Alessandra Caggiano

AbstractCloud manufacturing represents a valuable tool to enable wide sharing of manufacturing services and solutions by connecting suppliers and customers in large-scale manufacturing networks through a cloud platform. In this context, with increasing manufacturing network size at global scale, the elevated number of manufacturing solutions offered via cloud platform to connected customers can increase the complexity of decision-making, resulting in poor user experience from a customer perspective. To tackle this issue, in this paper, an intelligent decision-making support tool based on a manufacturing service recommendation system (RS) is designed and developed to provide for tailored manufacturing solution recommendation to customers in a cloud manufacturing system. A machine learning procedure based on neural networks for data regression is employed to process historical data on user manufacturing solution preferences and to carry out the automatic extraction of key features from incoming user instances and compatible manufacturing solutions generated by the cloud platform. In this way, the machine learning procedure is able to perform a customer segmentation and build a recommendation list characterized by a ranking of manufacturing solutions which is tailored to the specific customer profile. With the aim to validate the proposed intelligent decision-making support system, a case study is simulated within the framework of a cloud manufacturing platform delivering dynamic sharing of sheet metal cutting manufacturing solutions. The system capability is discussed in terms of machine learning performance as well as industrial applicability and user selection likelihood.


Author(s):  
Wajid Hassan ◽  
Te-Shun Chou ◽  
Omar Tamer ◽  
John Pickard ◽  
Patrick Appiah-Kubi ◽  
...  

<p>Cloud computing has sweeping impact on the human productivity. Today it’s used for Computing, Storage, Predictions and Intelligent Decision Making, among others. Intelligent Decision Making using Machine Learning has pushed for the Cloud Services to be even more fast, robust and accurate. Security remains one of the major concerns which affect the cloud computing growth however there exist various research challenges in cloud computing adoption such as lack of well managed service level agreement (SLA), frequent disconnections, resource scarcity, interoperability, privacy, and reliability. Tremendous amount of work still needs to be done to explore the security challenges arising due to widespread usage of cloud deployment using Containers. We also discuss Impact of Cloud Computing and Cloud Standards. Hence in this research paper, a detailed survey of cloud computing, concepts, architectural principles, key services, and implementation, design and deployment challenges of cloud computing are discussed in detail and important future research directions in the era of Machine Learning and Data Science have been identified.</p>


Author(s):  
Peter Kokol ◽  
Jan Jurman ◽  
Tajda Bogovič ◽  
Tadej Završnik ◽  
Jernej Završnik ◽  
...  

Cardiovascular diseases are one of the leading global causes of death. Following the positive experiences with machine learning in medicine we performed a study in which we assessed how machine learning can support decision making regarding coronary artery diseases. While a plethora of studies reported high accuracy rates of machine learning algorithms (MLA) in medical applications, the majority of the studies used the cleansed medical data bases without the presence of the “real world noise.” Contrary, the aim of our study was to perform machine learning on the routinely collected Anonymous Cardiovascular Database (ACD), extracted directly from a hospital information system of the University Medical Centre Maribor). Many studies used tens of different machine learning approaches with substantially varying results regarding accuracy (ACU), hence they were not usable as a base to validate the results of our study. Thus, we decided, that our study will be performed in the 2 phases. During the first phase we trained the different MLAs on a comparable University of California Irvine UCI Heart Disease Dataset. The aim of this phase was first to define the “standard” ACU values and second to reduce the set of all MLAs to the most appropriate candidates to be used on the ACD, during the second phase. Seven MLAs were selected and the standard ACUs for the 2-class diagnosis were 0.85. Surprisingly, the same MLAs achieved the ACUs around 0.96 on the ACD. A general comparison of both databases revealed that different machine learning algorithms performance differ significantly. The accuracy on the ACD reached the highest levels using decision trees and neural networks while Liner regression and AdaBoost performed best in UCI database. This might indicate that decision trees based algorithms and neural networks are better in coping with real world not “noise free” clinical data and could successfully support decision making concerned with coronary diseasesmachine learning.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan Brnabic ◽  
Lisa M. Hess

Abstract Background Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making. Methods This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist. Results A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies. Conclusions A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.


2021 ◽  
Vol 35 (2) ◽  
Author(s):  
Nicolas Bougie ◽  
Ryutaro Ichise

AbstractDeep reinforcement learning methods have achieved significant successes in complex decision-making problems. In fact, they traditionally rely on well-designed extrinsic rewards, which limits their applicability to many real-world tasks where rewards are naturally sparse. While cloning behaviors provided by an expert is a promising approach to the exploration problem, learning from a fixed set of demonstrations may be impracticable due to lack of state coverage or distribution mismatch—when the learner’s goal deviates from the demonstrated behaviors. Besides, we are interested in learning how to reach a wide range of goals from the same set of demonstrations. In this work we propose a novel goal-conditioned method that leverages very small sets of goal-driven demonstrations to massively accelerate the learning process. Crucially, we introduce the concept of active goal-driven demonstrations to query the demonstrator only in hard-to-learn and uncertain regions of the state space. We further present a strategy for prioritizing sampling of goals where the disagreement between the expert and the policy is maximized. We evaluate our method on a variety of benchmark environments from the Mujoco domain. Experimental results show that our method outperforms prior imitation learning approaches in most of the tasks in terms of exploration efficiency and average scores.


Sign in / Sign up

Export Citation Format

Share Document