scholarly journals Self-diffusion coefficient and sound velocity of Fe-Ni-O fluid: implications for the stratification of Earth’s outer core

Author(s):  
Wei-Jie Li ◽  
Zi Li ◽  
Chong-Jie Mo ◽  
Xian-Tu He ◽  
Cong Wang ◽  
...  

Abstract It is experimentally reported that the stratified layer atop Earth’s outer core is hundreds of kilometers thick with a maximum sound velocity reduction of 0.3% relative to the preliminary reference Earth model. However, why the sound velocity atop the outer core is reduced remains theoretically unclear. In this paper, the Ni and vital light O in the outer core were both considered to have implications for the stratification of Earth’s core, including the stratification thickness and the sound velocity profile. Ab initio molecular dynamics simulations were performed on the Fe-Ni-O fluid under the conditions of Earth’s outer core, and the self-diffusion coefficients and ion-ion dynamic structure factors were calculated. The self-diffusion coefficient of O is (19.56±0.83)×10-9 m2s-1 at the core-mantle boundary. Combining the diffusion equation with the time evolution of the O self-diffusion coefficient, the calculated stratification thickness at present is 194.7 km. The calculated ion-ion dynamic structural factors indicate that the sound velocity in the outmost outer core near the stratified layer is 7.86 km/s. These results show that Fe-Ni-O is a possible composition of the stratified layer atop the outer core featuring an appropriate thickness and a reduced sound velocity, thereby shedding light on the dynamic behavior of Earth’s core.

2010 ◽  
Vol 152-153 ◽  
pp. 1607-1610 ◽  
Author(s):  
Wei Chan Cao ◽  
Shu Hua Liang ◽  
Yue Xin Xue ◽  
Xian Hui Wang

In order to gain a deep insight into the mechanism of Ni-doped Mo activated sintering process, the diffusion behavior of Mo-Ni interface was studied utilizing a Mo-Ni diffusion couple. The phase structure and composition on the diffusion layer were characterized and analyzed by means of scanning electron microscope and transmission electron microscope, the self diffusion coefficient and interdiffusion coefficient were calculated. The results show that a diffusion layer is formed between Mo and Ni after sintering at 1223k for 1h, which is comprised of a δ-NiMo intermetallic compound and a limit solid solution containing small amounts of nickel. The self diffusion coefficient and interdiffusion coefficient are 2.068×10-18cm2/s and 4.5×10-12cm2/s, respectively. It is suggested that the diffusion rate of Mo in δ-NiMo intermetallic compound and a limit solid solution containing small amounts of nickel is 106 times bigger than that of self diffusion, and the intermetallic compound layer provides a short diffusion path for Mo activated sintering.


1992 ◽  
Vol 47 (10) ◽  
pp. 1047-1050 ◽  
Author(s):  
C. Herdlicka ◽  
J. Richter ◽  
M. D. Zeidler

AbstractSelf-diffusion coefficients of 7Li+ ions have been measured in molten LiNO3 with several compositions of 6Li+ and 7Li+ over a temperature range from 537 to 615 K. The NMR spin-echo method with pulsed field gradients was applied. It was found that the self-diffusion coefficient depends on the isotopic composition and shows a maximum at equimolar ratio. At temperatures above 600 K this behaviour disappears.


Sign in / Sign up

Export Citation Format

Share Document