equimolar ratio
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 12)

H-INDEX

14
(FIVE YEARS 1)

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1559
Author(s):  
Magdalena Urbala

Allyl ethers bearing free hydroxyl groups of CH2=CH-CH-O-A-OH type (hydroxyalkyl allyl ethers, allyloxyalcohols) are valuable chemicals in many environmentally friendly industrial applications. The development of technologically attractive methods for their production is necessary. The two pathways (L-L PTC and non-catalytic solvent-free conditions) were optimized for the highly selective and yield synthesis of 4-allyloxybutan-1-ol. Improvements in the PTC method (50% NaOH(aq), the equimolar ratio of NaOH to diol, cyclohexane as solvent) with a new highly selective and effective PT catalyst, i.e., Me(n-Oct)3N+Br− (0.3 mol%), resulted in 88% yield and 98% selectivity of 4-allyloxybutan-1-ol with minimal formation of allyl chloride hydrolysis by-products (<1%). In turn, application of non-catalytic solvent-free conditions and the change in the key substrate with an excess of diol and use of solid NaOH solely led to a mono-O-allylation product with an excellent yield of 99% in a relatively short reaction time (3.5 h), with trace amounts of by-products (<0.1%). This sustainable method is perfectly suitable for the synthesis on a larger scale (3 moles of the key substrate) and for the full O-allylation process.


Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 735
Author(s):  
Alessandro Micero ◽  
Tawheed Hashem ◽  
Hartmut Gliemann ◽  
Aline Léon

The quality assurance of hydrogen fuel for mobile applications is assessed by the guidelines and directives given in the European and international standards. However, the presence of impurities in the hydrogen fuel, in particular nitrogen, water, and oxygen, is experienced in several refueling stations. Within this work, metal-organic framework (MOF)-based membranes are investigated as a fine-purification stage of the hydrogen fuel. Three H2/N2 concentrations have been used to analyze the separation factor of UiO-66-NH2 membranes prepared using the layer-by-layer (LBL) and the one-pot (OP) synthesis methods. It is shown that the separation factor for an equimolar ratio is 14.4% higher for the LBL sample compared to the OP membrane, suggesting a higher orientation and continuity of the LBL surface-supported metal-organic framework (SURMOF). Using an equimolar ratio of H2/N2, it is shown that selective separation of hydrogen over nitrogen occurs with a separation factor of 3.02 and 2.64 for the SURMOF and MOF membrane, respectively. To the best of our knowledge, this is the highest reported performance for a single-phase UiO-66-NH2 membrane. For higher hydrogen concentrations, the separation factor decreases due to reduced interactions between pore walls and N2 molecules.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2725
Author(s):  
Mohamed M. Abdelghafour ◽  
Ágoston Orbán ◽  
Ágota Deák ◽  
Łukasz Lamch ◽  
Éva Frank ◽  
...  

Poly(ethylene succinate) (PES) is one of the most promising biodegradable and biocompatible polyesters and is widely used in different biomedical applications. However, little information is available on its solubility and precipitation properties, despite that these solution behavior properties affect its applicability. In order to systematically study these effects, biodegradable and biocompatible poly(ethylene succinate) (PES) was synthesized using ethylene glycol and succinic acid monomers with an equimolar ratio. Despite the optimized reaction temperature (T = 185 °C) of the direct condensation polymerization, relatively low molecular mass values were achieved without using a catalyst, and the Mn was adjustable with the reaction time (40–100 min) in the range of ~850 and ~1300 Da. The obtained crude products were purified by precipitation from THF (“good” solvent) with excess of methanol (“bad” solvent). The solvents for PES oligomers purification were chosen according to the calculated values of solubility parameters by different approaches (Fedors, Hoy and Hoftyzer-van Krevelen). The theta-solvent composition of the PES solution was 0.3 v/v% water and 0.7 v/v% DMSO in this binary mixture. These measurements were also allowed to determine important parameters such as the coefficients A (=0.67) and B (=3.69 × 104) from the Schultz equation, or the Kη (=8.22 × 10−2) and α (=0.52) constants from the Kuhn–Mark–Houwink equation. Hopefully, the prepared PES with different molecular weights is a promising candidate for biomedical applications and the reported data and constants are useful for other researchers who work with this promising polyester.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 140
Author(s):  
Marcella Denaro ◽  
Antonella Smeriglio ◽  
Domenico Trombetta

Recently, several studies have highlighted the role of Citrus flavanones in counteracting oxidative stress and inflammatory response in bowel diseases. The aim of study was to identify the most promising Citrus flavanones by a preliminary antioxidant and anti-inflammatory screening by in vitro cell-free assays, and then to mix the most powerful ones in equimolar ratio in order to investigate a potential synergistic activity. The obtained flavanones mix (FM) was then subjected to in vitro simulated digestion to evaluate the availability of the parent compounds at the intestinal level. Finally, the anti-inflammatory activity was investigated on a Caco-2 cell-based model stimulated with interleukin (IL)-1β. FM showed stronger antioxidant and anti-inflammatory activity with respect to the single flavanones, demonstrating the occurrence of synergistic activity. The LC-DAD-ESI-MS/MS analysis of gastric and duodenal digested FM (DFM) showed that all compounds remained unchanged at the end of digestion. As proof, a superimposable behavior was observed between FM and DFM in the anti-inflammatory assay carried out on Caco-2 cells. Indeed, it was observed that both FM and DFM decreased the IL-6, IL-8, and nitric oxide (NO) release similarly to the reference anti-inflammatory drug dexamethasone.


Author(s):  
Luluk Edahwati ◽  
Sutiyono ◽  
Rizqi Rendri Anggriawan

Excess phosphate (PO43-) and ammonium (NH4+) in wastewater can cause environmental damages, such as pollutants and eutrophication in water. Dairy cow urine is a dangerous liquid waste that contains high amounts of phosphate and ammonium. The removal of PO4 and NH4 components can be done by crystallizing them into struvite fertilizers. Struvite (MgNH4PO4.6H2O) is a mineral formed from magnesium, ammonium, and phosphate with the equimolar ratio. The crystallization process of struvite is carried out using a vertical reactor. MAP solution (magnesium ammonium phosphate) is prepared by reacting MgCl2, H3PO4, and dairy cow urine with MAP molar ratio of 1 : 1 : 1 and KOH 1N. The study run in pH 8; 8.5; 9; 9.5; 10 and temperature variations of 25, 30, 35, 40, 45˚C  in vertical reactor continuously. The struvite precipitate was filtered and dried, it is analyzed by XRF to determine the struvite composition and SEM to determine the morphology of the struvite. The results showed that the best percentage of phosphate and ammonium was at 45˚C and pH 9.5, it was 33.2% and 27.9%.


2020 ◽  
Vol 98 (9) ◽  
pp. 531-538
Author(s):  
Jaana Vapaavuori ◽  
Jenni E. Koskela ◽  
Xiaoxiao Wang ◽  
Robin H.A. Ras ◽  
Arri Priimagi ◽  
...  

Supramolecular complexation between photoresponsive azobenzene chromophores and a photopassive polymer host offers synthetic and design advantages compared with conventional covalent azo-containing polymers. In this context, it is important to understand the impact of the strength of the supramolecular interaction on the optical response. Herein, we study the effect of hydrogen-bonding strength between a photopassive polymer host [poly(4-vinylpyridine), or P4VP] and three azobenzene analogues capable of forming weaker (hydroxyl), stronger (carboxylic acid), or no H-bonding with P4VP. The hydroxyl-functionalized azo forms complete H-bonding complexation up to equimolar ratio with VP, whereas the COOH-functionalized azo reaches only up to 30% H-bond complexation due to competing acid dimerization that leads to partial phase separation and azo crystallization. We show that the stronger azo-polymer H-bonding nevertheless provides higher photoinduced orientation and better performance during optical surface patterning, in terms of grating depth and diffraction efficiency, when phase separation is either avoided altogether or is limited by using relatively low azo contents. These results demonstrate the importance of the H-bonding strength on the photoresponse of azopolymer complexes, as well as the need to consider the interplay between different intermolecular interactions that can affect complexation.


Author(s):  
K. S. Pavithra ◽  
S. C. Gurumurthy ◽  
M. P. Yashoda ◽  
Tarun Mateti ◽  
Koduri Ramam ◽  
...  

Abstract One-step wet chemical method has been employed for the synthesis of silver (Ag) nanofluids followed by the preparation of polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA) and PVP–PVA mixed-dispersant-stabilized nanofluids by varying the concentration ratio of dispersants for the viscosity and thermal conductivity analysis. The optical absorption studies indicate the presence of nanoparticles in the prepared fluids (or the formation of the silver nanoparticles). The shape and size of the nanoparticles are confirmed by the field emission scanning electron microscopy, and the particle size distribution and zeta potential analysis were carried out by using dynamic light scattering. It is observed that the thermal conductivity of Ag nanofluids increases with an increase in the dispersant concentration with respect to the temperature. The maximum thermal conductivity enhancement of Ag nanofluids was observed in the presence of an equimolar ratio of PVP–PVA (1:1:1) blends as stabilizers. Graphic abstract


2019 ◽  
Vol 20 (24) ◽  
pp. 6163 ◽  
Author(s):  
Huilin Ge ◽  
Min Zhou ◽  
Daizhu Lv ◽  
Mingyue Wang ◽  
Cunzhu Dong ◽  
...  

Chirality is an important property of molecules. The study of biological activity and toxicity of chiral molecules has important theoretical and practical significance for toxicology, pharmacology, and environmental science. The toxicological significance of chiral ionic liquids (ILs) has not been well revealed. In the present study, the enantiomeric joint toxicities of four pairs of chiral ILs 1-alkyl-3-methylimidazolium lactate to Allivibrio fischeri were systematically investigated by using a comprehensive approach including the co-toxicity coefficient (CTC) integrated with confidence interval (CI) method (CTCICI), concentration-response curve (CRC), and isobole analysis. The direct equipartition ray (EquRay) design was used to design five binary mixtures of enantiomers according to molar ratios of 1:5, 2:4, 3:3, 4:2, and 5:1. The toxicities of chiral ILs and their mixtures were determined using the microplate toxicity analysis (MTA) method. Concentration addition (CA) and independent action (IA) were used as the additive reference models to construct the predicted CRC and isobole of mixtures. On the whole, there was an enantioselective toxicity difference between [BMIM]D-Lac and [BMIM]L-Lac, and [HMIM]D-Lac and [HMIM]L-Lac, while no enantioselective toxicity difference was observed for [EMIM]D-Lac and [EMIM]L-Lac, and [OMIM]D-Lac and [OMIM]L-Lac. Thereinto, the enantiomer mixtures of [BMIM]D-Lac and [BMIM]L-Lac, and [HMIM]D-Lac and [HMIM]L-Lac presented antagonistic action, and the enantiomer mixtures of [EMIM]D-Lac and [EMIM]L-Lac, and [OMIM]D-Lac and [OMIM]L-Lac overall presented additive action. Moreover, the greatest antagonistic toxicity interaction occurred at the equimolar ratio of enantiomers. Based on these results, we proposed two hypotheses, (1) chiral molecules with enantioselective toxicity difference tended to produce toxicity interactions, (2) the highest or lowest toxicity was usually at the equimolar ratio and its adjacent ratio for the enantiomer mixture. These hypotheses will need to be further validated by other enantiomer mixtures.


Author(s):  
Deepak Kumar Sharma ◽  
Jyoti Sharma ◽  
Ramavtar Sharma

A series of Chloro-arsenic(III) complexes with N, O donor β-ketiminate ligand (L1) and S, S donor piperidine dithiocarbamate ligand (L2) have been  synthesized by the reactions of AsCl3 with both ligands in equimolar ratio by stirring at room temperature in benzene solution. All these synthesized compounds have been characterized by Elemental Analysis, IR, (1H and 13C) NMR Spectral and ESI-Mass Studies. Both Ligands and their corresponding Chloro-arsenic (III) complexes have been screened for antimicrobial activity against the various bacterial (E. Coli, B. Subtalis and P. Aeruginosa) and fungal (T. Resei, P. Funiculosum and Fusarium) strains and results obtained .


Sign in / Sign up

Export Citation Format

Share Document