Changing Rainfall Patterns in India: A Spatiotemporal Analysis of Trends & Impacts

2020 ◽  
Author(s):  
Praharsh Patel ◽  
Adeel Khan

Abstract The hydrological cycle that starts with rainfall has been under major threat from the global temperature rise and climatic changes. In India, rainfall changes not only jeopardize water security but also have a major set-back for socio-economic stability. There have been attempts to decode the changing rainfall patterns in India but most of them conducted at wider spatial resolution (such as national, state, or sub-divisional level) fail to capture the essence of spatial variation in rainfall characteristics. To get a clearer understanding of change in key rainfall parameters, this paper analyses more than 197 million 0.25˚ x 0.25˚ gridded rainfall data points. The fine resolution 117 years (1901-2017) of daily rainfall data is utilized to test significant spatiotemporal trends in the quantum of rainfall and other key rainfall parameters such as rainy days, monsoon onset and withdrawal dates, occurrences of extreme rainfall events, and frequency of drought and high rainfall years. With an emphasis on changing climatic patterns since perceived climate change onset in the 1970s, the study identifies the regions with significant changes in rainfall patterns by comparing key parameters pre- & post- 1970s. The paper also highlights the major repercussions and challenges for the identified regions with significant changing rainfall patterns.

2020 ◽  
Author(s):  
Praharsh Patel ◽  
Adeel Khan

Abstract The hydrological cycle that starts with rainfall has been under major threat from the global temperature rise and climatic changes. In India, rainfall changes not only jeopardize water security but also have a major set-back for socio-economic stability. There have been attempts to decode the changing rainfall patterns in India but most of them conducted at wider spatial resolution (such as national, state, or sub-divisional level) fail to capture the essence of spatial variation in rainfall characteristics. To get a clearer understanding of change in key rainfall parameters, this paper analyses more than 197 million 0.25˚ x 0.25˚ gridded rainfall data points. The fine resolution 117 years (1901-2017) of daily rainfall data is utilized to test significant spatiotemporal trends in the quantum of rainfall and other key rainfall parameters such as rainy days, monsoon onset and withdrawal dates, occurrences of extreme rainfall events, and frequency of drought and high rainfall years. With an emphasis on changing climatic patterns since perceived climate change onset in the 1970s, the study identifies the regions with significant changes in rainfall patterns by comparing key parameters pre- & post- 1970s. The paper also highlights the major repercussions and challenges for the identified regions with significant changing rainfall patterns.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Reginaldo Moura Brasil Neto ◽  
Celso Augusto Guimarães Santos ◽  
Jorge Flávio Casé Braga da Costa Silva ◽  
Richarde Marques da Silva ◽  
Carlos Antonio Costa dos Santos ◽  
...  

AbstractDroughts are complex natural phenomena that influence society's development in different aspects; therefore, monitoring their behavior and future trends is a useful task to assist the management of natural resources. In addition, the use of satellite-estimated rainfall data emerges as a promising tool to monitor these phenomena in large spatial domains. The Tropical Rainfall Measuring Mission (TRMM) products have been validated in several studies and stand out among the available products. Therefore, this work seeks to evaluate TRMM-estimated rainfall data's performance for monitoring the behavior and spatiotemporal trends of meteorological droughts over Paraíba State, based on the standardized precipitation index (SPI) from 1998 to 2017. Then, 78 rain gauge-measured and 187 TRMM-estimated rainfall time series were used, and trends of drought behavior, duration, and severity at eight time scales were evaluated using the Mann–Kendall and Sen tests. The results show that the TRMM-estimated rainfall data accurately captured the pattern of recent extreme rainfall events that occurred over Paraíba State. Drought events tend to be drier, longer-lasting, and more severe in most of the state. The greatest inconsistencies between the results obtained from rain gauge-measured and TRMM-estimated rainfall data are concentrated in the area closest to the coast. Furthermore, long-term drought trends are more pronounced than short-term drought, and the TRMM-estimated rainfall data correctly identified this pattern. Thus, TRMM-estimated rainfall data are a valuable source of data for identifying drought behavior and trends over much of the region.


2016 ◽  
Vol 78 (9-4) ◽  
Author(s):  
Nur Shazwani Muhammad ◽  
Amieroul Iefwat Akashah ◽  
Jazuri Abdullah

Extreme rainfall events are the main cause of flooding. This study aimed to examine seven extreme rainfall indices, i.e. extreme rain sum (XRS), very wet day intensity (I95), extremely wet day intensity (I99), very wet day proportion (R95), extremely wet day proportion (R99), very wet days (N95) and extremely wet days (N99) using Mann-Kendall (MK) and the normalized statistic Z tests. The analyses are based on the daily rainfall data gathered from Bayan Lepas, Subang, Senai, Kuantan and Kota Bharu. The east coast states received more rainfall than any other parts in Peninsular Malaysia. Kota Bharu station recorded the highest XRS, i.e. 648 mm. The analyses also indicate that the stations in the eastern part of Peninsular Malaysia experienced higher XRS, I95, I99, R95 and R99 as compared to the stations located in the western and northern part of Peninsular Malaysia. Subang and Senai show the highest number of days for wet and very wet (N95) as compared to other stations. Other than that, all stations except for Kota Bharu show increasing trends for most of the extreme rainfall indices. Upward trends indicate that the extreme rainfall events were becoming more severe over the period of 1960 to 2014. 


2019 ◽  
Vol 1 (1) ◽  
pp. 33
Author(s):  
M Welly

Many people in Indonesia calculate design rainfall before calculating the design flooddischarge. The design rainfall with a certain return period will eventually be convertedinto a design flood discharge by combining it with the characteristics of the watershed.However, the lack of a network of rainfall recording stations makes many areas that arenot hydrologically measured (ungauged basin), so it is quite difficult to know thecharacteristics of rain in the area concerned. This study aims to analyze thecharacteristics of design rainfall in Lampung Province. The focus of the analysis is toinvestigate whether geographical factors influence the design rainfall that occurs in theparticular area. The data used in this study is daily rainfall data from 15 rainfallrecording stations spread in Lampung Province. The method of frequency analysis usedin this study is the Gumbel method. The research shows that the geographical location ofan area does not have significant effect on extreme rainfall events. The effect of risingearth temperatures due to natural exploitation by humans tends to be stronger as a causeof extreme events such as extreme rainfall.Keywords: Influence, geographical, factors, extreme, rainfall.


2020 ◽  
Vol 35 (2) ◽  
pp. 357-374
Author(s):  
Paulo Miguel de Bodas Terassi ◽  
José Francisco de Oliveira Júnior ◽  
Givanildo de Gois ◽  
Bruno Serafini Sobral ◽  
Emerson Galvani ◽  
...  

Abstract The knowledge of intensity and frequency of rainfall allows establishing predictive measures to minimize impacts caused by high volume of rainfall totals in a region. Therefore, the objective is to evaluate daily rainfall for Paraná slope of the Itararé watershed (PSIW) and to verify the spatiotemporal trend of intense and extreme daily rainfall. Rainfall data from 14 stations collected from 1976 to 2012 were used with less than 4% of data faults. Multivariate analysis based on cluster analysis technique (CA) was used applying the Euclidean distance for the identification of homogeneous groups, and the quantiles technique to classify daily rainfall. The Mann-Kendall (MK) test was used to identify trends for annual rainfall totals, annual number of rainy days (ANRD) and for the occurrence of intense (R95p) and extreme (R99p) rainfall. The CA technique identified three rainfall groups (HG I, II and III). Given the latitudinal position of the area, rainfall at the southern sector is characterized by its greater similarities with the subtropical climate, whereas in the North sector there is a consistent reduction of rainfall totals in autumn and, especially, during winter months, which are characteristic of the tropical climate. The MK test identified the downward trend of ANRD, with greater significance for the south-centered sectors of the basin. The observed trends for the intense (R95p) and extreme (R99p) daily rainfall show the predominance of reduction for the Southwest and central sector, followed by a significant increase in the Southeast and North sectors of the PSIW.


2021 ◽  
Author(s):  
Emir Yapıcı ◽  
Ahmet Öztopal ◽  
Erdem Erdi

<p>As is known, rainfall varies spatially and temporally with regard to intensity and frequency. Floods, related to extreme rainfall cases, cause stress on geophysical system and community if climate change is considered. For this reason determining of extreme rainfall patterns is very important. While obtaining three dimensional status of hydrometors in atmosphere is not possible only by using ground station networks, it is possible by using weather radars. Therefore, weather radars provide significant contribution to studies about getting cloud and rainfall patterns. The aim of this study is to investigate spatial patterns of extreme rainfall events in Antalya and Muğla cities which are located on the Mediterranean coast of Türkiye. Firstly, hourly rainfall (RN1) and rain rate (SRI) products of 2 C band doppler radars and raingauge data between 2015 and 2020 will be processed by a software named MeteoRadar which is developed by İstanbul Technical University. It is capable of reading, decoding, parallel processing and visualization. Secondly, extreme rainfall patterns will be obtained over 2 study areas. Finally, after validation by using raingauge data, results will be discussed in detail.</p><p><strong>Key Words</strong>: Antalya, Extreme rainfall, MeteoRadar, Muğla, RN1, SRI, Weather radar.</p>


Author(s):  
E. Schiavo Bernardi ◽  
D. Allasia ◽  
R. Basso ◽  
P. Freitas Ferreira ◽  
R. Tassi

Abstract. The lack of rainfall data in Brazil, and, in particular, in Rio Grande do Sul State (RS), hinders the understanding of the spatial and temporal distribution of rainfall, especially in the case of the more complex extreme events. In this context, rainfall's estimation from remote sensors is seen as alternative to the scarcity of rainfall gauges. However, as they are indirect measures, such estimates needs validation. This paper aims to verify the applicability of the Tropical Rainfall Measuring Mission (TRMM) satellite information for extreme rainfall determination in RS. The analysis was accomplished at different temporal scales that ranged from 5 min to daily rainfall while spatial distribution of rainfall was investigated by means of regionalization. An initial test verified TRMM rainfall estimative against measured rainfall at gauges for 1998–2013 period considering different durations and return periods (RP). Results indicated that, for the RP of 2, 5, 10 and 15 years, TRMM overestimated on average 24.7% daily rainfall. As TRMM minimum time-steps is 3 h, in order to verify shorter duration rainfall, the TRMM data were adapted to fit Bell's (1969) generalized IDF formula (based on the existence of similarity between the mechanisms of extreme rainfall events as they are associated to convective cells). Bell`s equation error against measured precipitation was around 5–10%, which varied based on location, RP and duration while the coupled BELL+TRMM error was around 10–35%. However, errors were regionally distributed, allowing a correction to be implemented that reduced by half these values. These findings in turn permitted the use of TRMM+Bell estimates to improve the understanding of spatiotemporal distribution of extreme hydrological rainfall events.


2020 ◽  
Vol 6 (2) ◽  
pp. 177
Author(s):  
Candra Febryanto Patandean

Extreme weather in this case heavy rains is common in the city of Makassar, both of which resulted in a flood or no flood.  This type of research is descriptive research that aims to describe the incidence of rain in the transition season in Makassar. The source of data used in obtaining data on research in Makassar is secondary data. His research methods such as analysis method is based on monthly rainfall data to determine the monthly rainfall pattern using the Log Pearson III distribution methods and daily rainfall data duration of 3 hours early to analyze the frequency of rain by using Gumbel distribution methods. Based on the results in a graph of monthly rainfall patterns in the city of Makassar in the year (1985-2014) for 30 years and chart the frequency of daily rainfall duration 3 hours late in the year (2005 to 2014) for 10 years in the transition season in the city of Makassar, we can conclude that monthly rainfall patterns in Makassar is a monsoonal pattern with the second-largest peak intensity of rainfall occurs in January and December and the smallest intensity of rainfall occurs in August.


Sign in / Sign up

Export Citation Format

Share Document