Investigation of Extreme Rainfall Patterns around Antalya and Muğla Cities in Türkiye by Using C Band Doppler Radar Data

Author(s):  
Emir Yapıcı ◽  
Ahmet Öztopal ◽  
Erdem Erdi

<p>As is known, rainfall varies spatially and temporally with regard to intensity and frequency. Floods, related to extreme rainfall cases, cause stress on geophysical system and community if climate change is considered. For this reason determining of extreme rainfall patterns is very important. While obtaining three dimensional status of hydrometors in atmosphere is not possible only by using ground station networks, it is possible by using weather radars. Therefore, weather radars provide significant contribution to studies about getting cloud and rainfall patterns. The aim of this study is to investigate spatial patterns of extreme rainfall events in Antalya and Muğla cities which are located on the Mediterranean coast of Türkiye. Firstly, hourly rainfall (RN1) and rain rate (SRI) products of 2 C band doppler radars and raingauge data between 2015 and 2020 will be processed by a software named MeteoRadar which is developed by İstanbul Technical University. It is capable of reading, decoding, parallel processing and visualization. Secondly, extreme rainfall patterns will be obtained over 2 study areas. Finally, after validation by using raingauge data, results will be discussed in detail.</p><p><strong>Key Words</strong>: Antalya, Extreme rainfall, MeteoRadar, Muğla, RN1, SRI, Weather radar.</p>

2010 ◽  
Vol 3 (5) ◽  
pp. 4459-4495 ◽  
Author(s):  
C. López Carrillo ◽  
D. J. Raymond

Abstract. In this work, we describe an efficient approach for wind retrieval from dual Doppler radar data. The approach produces a gridded field that not only satisfies the observations, but also satisfies the anelastic mass continuity equation. The method is based on the so-called three-dimensional variational approach to the retrieval of wind fields from radar data. The novelty consists in separating the task into steps that reduce the amount of data processed by the global minimization algorithm, while keeping the most relevant information from the radar observations. The method is flexible enough to incorporate observations from several radars, accommodate complex sampling geometries, and readily include dropsonde or sounding observations in the analysis. We demonstrate the usefulness of our method by analyzing a real case with data collected during the TPARC/TCS-08 field campaign.


2018 ◽  
Vol 146 (10) ◽  
pp. 3461-3480 ◽  
Author(s):  
Jason M. Apke ◽  
John R. Mecikalski ◽  
Kristopher Bedka ◽  
Eugene W. McCaul ◽  
Cameron R. Homeyer ◽  
...  

Abstract Rapid acceleration of cloud-top outflow near vigorous storm updrafts can be readily observed in Geostationary Operational Environmental Satellite-14 (GOES-14) super rapid scan (SRS; 60 s) mode data. Conventional wisdom implies that this outflow is related to the intensity of updrafts and the formation of severe weather. However, from an SRS satellite perspective, the pairing of observed expansion and updraft intensity has not been objectively derived and documented. The goal of this study is to relate GOES-14 SRS-derived cloud-top horizontal divergence (CTD) over deep convection to internal updraft characteristics, and document evolution for severe and nonsevere thunderstorms. A new SRS flow derivation system is presented here to estimate storm-scale (<20 km) CTD. This CTD field is coupled with other proxies for storm updraft location and intensity such as overshooting tops (OTs), total lightning flash rates, and three-dimensional flow fields derived from dual-Doppler radar data. Objectively identified OTs with (without) matching CTD maxima were more (less) likely to be associated with radar-observed deep convection and severe weather reports at the ground, suggesting that some OTs were incorrectly identified. The correlation between CTD magnitude, maximum updraft speed, and total lightning was strongly positive for a nonsupercell pulse storm, and weakly positive for a supercell with multiple updraft pulses present. The relationship for the supercell was nonlinear, though larger flash rates are found during periods of larger CTD. Analysis here suggests that combining CTD with OTs and total lightning could have severe weather nowcasting value.


Author(s):  
Annette M. Boehm ◽  
Michael M. Bell

AbstractThe newly developed SAMURAI-TR is used to estimate three-dimensional temperature and pressure perturbations in Hurricane Rita on 23 September 2005 from multi-Doppler radar data during the RAINEX field campaign. These are believed to be the first fully three-dimensional gridded thermodynamic observations from a TC. Rita was a major hurricane at this time and was affected by 13 m s−1 deep-layer vertical wind shear. Analysis of the contributions of the kinematic and retrieved thermodynamic fields to different azimuthal wavenumbers suggests the interpretation of eyewall convective forcing within a three-level framework of balanced, quasi-balanced, and unbalanced motions. The axisymmetric, wavenumber-0 structure was approximately in thermal-wind balance, resulting in a large pressure drop and temperature increase toward the center. The wavenumber-1 structure was determined by the interaction of the storm with environmental vertical wind shear resulting in a quasi-balance between shear and shear-induced kinematic and thermo-dynamic perturbations. The observed wavenumber-1 thermodynamic asymmetries corroborate results of previous studies on the response of a vortex tilted by shear, and add new evidence that the vertical motion is nearly hydrostatic on the wavenumber-1 scale. Higher-order wavenumbers were associated with unbalanced motions and convective cells within the eyewall. The unbalanced vertical acceleration was positively correlated with buoyant forcing from thermal perturbations and negatively correlated with perturbation pressure gradients relative to the balanced vortex.


2019 ◽  
Vol 147 (12) ◽  
pp. 4389-4409 ◽  
Author(s):  
Yunji Zhang ◽  
David J. Stensrud ◽  
Fuqing Zhang

Abstract This study explores the benefits of assimilating infrared (IR) brightness temperature (BT) observations from geostationary satellites jointly with radial velocity (Vr) and reflectivity (Z) observations from Doppler weather radars within an ensemble Kalman filter (EnKF) data assimilation system to the convection-allowing ensemble analysis and prediction of a tornadic supercell thunderstorm event on 12 June 2017 across Wyoming and Nebraska. While radar observations sample the three-dimensional storm structures with high fidelity, BT observations provide information about clouds prior to the formation of precipitation particles when in-storm radar observations are not yet available and also provide information on the environment outside the thunderstorms. To better understand the strengths and limitations of each observation type, the satellite and Doppler radar observations are assimilated separately and jointly, and the ensemble analyses and forecasts are compared with available observations. Results show that assimilating BT observations has the potential to increase the forecast and warning lead times of severe weather events compared with radar observations and may also potentially complement the sparse surface observations in some regions as revealed by the probabilistic prediction of mesocyclone tracks initialized from EnKF analyses as various times. Additionally, the assimilation of both BT and Vr observations yields the best ensemble forecasts, providing higher confidence, improved accuracy, and longer lead times on the probabilistic prediction of midlevel mesocyclones.


2006 ◽  
Vol 21 (5) ◽  
pp. 802-823 ◽  
Author(s):  
Valliappa Lakshmanan ◽  
Travis Smith ◽  
Kurt Hondl ◽  
Gregory J. Stumpf ◽  
Arthur Witt

Abstract With the advent of real-time streaming data from various radar networks, including most Weather Surveillance Radars-1988 Doppler and several Terminal Doppler Weather Radars, it is now possible to combine data in real time to form 3D multiple-radar grids. Herein, a technique for taking the base radar data (reflectivity and radial velocity) and derived products from multiple radars and combining them in real time into a rapidly updating 3D merged grid is described. An estimate of that radar product combined from all the different radars can be extracted from the 3D grid at any time. This is accomplished through a formulation that accounts for the varying radar beam geometry with range, vertical gaps between radar scans, the lack of time synchronization between radars, storm movement, varying beam resolutions between different types of radars, beam blockage due to terrain, differing radar calibration, and inaccurate time stamps on radar data. Techniques for merging scalar products like reflectivity, and innovative, real-time techniques for combining velocity and velocity-derived products are demonstrated. Precomputation techniques that can be utilized to perform the merger in real time and derived products that can be computed from these three-dimensional merger grids are described.


2012 ◽  
Vol 140 (5) ◽  
pp. 1603-1619 ◽  
Author(s):  
Yu-Chieng Liou ◽  
Shao-Fan Chang ◽  
Juanzhen Sun

This study develops an extension of a variational-based multiple-Doppler radar synthesis method to construct the three-dimensional wind field over complex topography. The immersed boundary method (IBM) is implemented to take into account the influence imposed by a nonflat surface. The IBM has the merit of providing realistic topographic forcing without the need to change the Cartesian grid configuration into a terrain-following coordinate system. Both Dirichlet and Neumann boundary conditions for the wind fields can be incorporated. The wind fields above the terrain are obtained by variationally adjusting the solutions to satisfy a series of weak constraints, which include the multiple-radar radial velocity observations, anelastic continuity equation, vertical vorticity equation, background wind, and spatial smoothness terms. Experiments using model-simulated data reveal that the flow structures over complex orography can be successfully retrieved using radial velocity measurements from multiple Doppler radars. The primary advantages of the original synthesis method are still maintained, that is, the winds along and near the radar baseline are well retrieved, and the resulting three-dimensional flow fields can be used directly for vorticity budget diagnosis. If compared with the traditional wind synthesis algorithm, this method is able to merge data from different sources, and utilize data from any number of radars. This provides more flexibility in designing various scanning strategies, so that the atmosphere may be probed more efficiently using a multiple-radar network. This method is also tested using the radar data collected during the Southwest Monsoon Experiment (SoWMEX), which was conducted in Taiwan from May to June 2008 with reasonable results being obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-18
Author(s):  
Edward Natenberg ◽  
Jidong Gao ◽  
Ming Xue ◽  
Frederick H. Carr

A three-dimensional variational (3DVAR) assimilation technique developed for a convective-scale NWP model—advanced regional prediction system (ARPS)—is used to analyze the 8 May 2003, Moore/Midwest City, Oklahoma tornadic supercell thunderstorm. Previous studies on this case used only one or two radars that are very close to this storm. However, three other radars observed the upper-level part of the storm. Because these three radars are located far away from the targeted storm, they were overlooked by previous studies. High-frequency intermittent 3DVAR analyses are performed using the data from five radars that together provide a more complete picture of this storm. The analyses capture a well-defined mesocyclone in the midlevels and the wind circulation associated with a hook-shaped echo. The analyses produced through this technique are used as initial conditions for a 40-minute storm-scale forecast. The impact of multiple radars on a short-term NWP forecast is most evident when compared to forecasts using data from only one and two radars. The use of all radars provides the best forecast in which a strong low-level mesocyclone develops and tracks in close proximity to the actual tornado damage path.


2013 ◽  
Vol 30 (6) ◽  
pp. 1055-1071 ◽  
Author(s):  
Sylvie Lorsolo ◽  
John Gamache ◽  
Altug Aksoy

Abstract The Hurricane Research Division Doppler radar analysis software provides three-dimensional analyses of the three wind components in tropical cyclones. Although this software has been used for over a decade, there has never been a complete and in-depth evaluation of the resulting analyses. The goal here is to provide an evaluation that will permit the best use of the analyses, but also to improve the software. To evaluate the software, analyses are produced from simulated radar data acquired from an output of a Hurricane Weather Research and Forecasting (HWRF) model nature run and are compared against the model “truth” wind fields. Comparisons of the three components of the wind show that the software provides analyses of good quality. The tangential wind is best retrieved, exhibiting an overall small mean error of 0.5 m s−1 at most levels and a root-mean-square error less than 2 m s−1. The retrieval of the radial wind is also quite accurate, exhibiting comparable errors, although the accuracy of the tangential wind is generally better. Some degradation of the retrieval quality is observed at higher altitude, mainly due to sparser distribution of data in the model. The vertical component of the wind appears to be the most challenging to retrieve, but the software still provides acceptable results. The tropical cyclone mean azimuthal structure and wavenumber structure are found to be very well captured. Sources of errors inherent to airborne Doppler measurements and the effects of some of the simplifications used in the simulation methodology are also discussed.


2013 ◽  
Vol 52 (11) ◽  
pp. 2493-2508 ◽  
Author(s):  
Xiaomin Chen ◽  
Kun Zhao ◽  
Wen-Chau Lee ◽  
Ben Jong-Dao Jou ◽  
Ming Xue ◽  
...  

AbstractThe ground-based velocity track display (GBVTD) was developed to deduce a three-dimensional primary circulation of landfalling tropical cyclones from single-Doppler radar data. However, the cross-beam component of the mean wind cannot be resolved and is consequently aliased into the retrieved axisymmetric tangential wind . Recently, the development of the hurricane volume velocity processing method (HVVP) enabled the independent estimation of ; however, HVVP is potentially limited by the unknown accuracy of empirical assumptions used to deduce the modified Rankine-combined vortex exponent . By combing the GBVTD with HVVP techniques, this study proposes a modified GBVTD method (MGBVTD) to objectively deduce from the GBVTD technique and provide a more accurate estimation of and via an iterative procedure to reach converged and cross-beam component of solutions. MGBVTD retains the strength of both algorithms but avoids their weaknesses. The results from idealized experiments demonstrate that the MGBVTD-retrieved cross-beam component of is within 2 m s−1 of reality. MGBVTD was applied to Hurricane Bret (1999) whose inner core was captured simultaneously by two Weather Surveillance Radar-1988 Doppler (WSR-88D) instruments. The MGBVTD-retrieved cross-beam component of from single-Doppler radar data is very close to that from dual-Doppler radar synthesis using extended GBVTD (EGBVTD); their difference is less than 2 m s−1. The mean difference in the MGBVTD-retrieved from the two radars is ~2 m s−1, which is significantly smaller than that resolved in GBVTD retrievals (~5 m s−1).


Sign in / Sign up

Export Citation Format

Share Document