Distinctive Kinesin-14 Motors Associate with Midzone Microtubules to Construct Mitotic Spindles with Two Convergent Poles in Arabidopsis

Author(s):  
Xiaojiang Guo ◽  
Calvin Huang ◽  
Yuh-Ru Julie Lee ◽  
JIRUI WANG ◽  
Bo Liu

Abstract Microtubule (MT) motors in the Kinesin-14 subfamily proliferated in photosynthetic organisms and they often incorporated sequences bearing novel structural features. To gain insights into the functions of diversified Kinesin-14 motors from an evolutionary perspective, we performed phylogenetic analyses across different eukaryotic kingdoms. Compared to fungi that have a single class of Kinesin-14, the early divergent protist Giardia possesses two classes and the motile green alga Chlamydomonas produces four classes (Kinesin-14A to Kinesin-14D). The fifth class Kinesin-14E first appeared among immotile green algae and the sixth Kinesin-14F emerged in mosses, concomitantly with the display of 3D growth. The conservation of Kinesin-14D from green algae prompted us to investigate its function in Arabidopsis in which three such motors functioned in cell cycle-dependent manners. They localized on selective spindle MTs and/or sometimes kinetochore-like structures, and later all became conspicuous on MT bundles in the spindle midzone following sister chromatid segregation. Genetic dissection of Kinesin-14D1 showed that its loss led to hypersensitivity to low doses of the MT-depolymerizing herbicide oryzalin. Kinesin-14D1 association with the midzone MTs in both prophase and mitotic spindles. The oryzalin treatment left behind discrete kinetochore fibers attached to randomly positioned chromosomes in the mitotic kinesin-14d1 cells but prevented the pole convergence of bipolar mitotic spindles. This function of Kinesin-14D1 in the spindle midzone is likely dependent on an MT-binding domain at the C-terminus to the catalytic motor domain. Therefore, our results revealed a novel Kinesin-14D-dependent mechanism that regulates the formation of bipolar spindle apparatus with converged acentrosomal poles.

FEBS Journal ◽  
2012 ◽  
Vol 279 (13) ◽  
pp. 2357-2367 ◽  
Author(s):  
Mikhail Orel ◽  
Esteve Padrós ◽  
Joan Manyosa

2020 ◽  
Vol 94 (11) ◽  
Author(s):  
Shengzhong Xu ◽  
Liang Zhou ◽  
Xiaosha Liang ◽  
Yifan Zhou ◽  
Hao Chen ◽  
...  

ABSTRACT Virophages are small parasitic double-stranded DNA (dsDNA) viruses of giant dsDNA viruses infecting unicellular eukaryotes. Except for a few isolated virophages characterized by parasitization mechanisms, features of virophages discovered in metagenomic data sets remain largely unknown. Here, the complete genomes of seven virophages (26.6 to 31.5 kbp) and four large DNA viruses (190.4 to 392.5 kbp) that coexist in the freshwater lake Dishui Lake, Shanghai, China, have been identified based on environmental metagenomic investigation. Both genomic and phylogenetic analyses indicate that Dishui Lake virophages (DSLVs) are closely related to each other and to other lake virophages, and Dishui Lake large DNA viruses are affiliated with the micro-green alga-infecting Prasinovirus of the Phycodnaviridae (named Dishui Lake phycodnaviruses [DSLPVs]) and protist (protozoan and alga)-infecting Mimiviridae (named Dishui Lake large alga virus [DSLLAV]). The DSLVs possess more genes with closer homology to that of large alga viruses than to that of giant protozoan viruses. Furthermore, the DSLVs are strongly associated with large green alga viruses, including DSLPV4 and DSLLAV1, based on codon usage as well as oligonucleotide frequency and correlation analyses. Surprisingly, a nonhomologous CRISPR-Cas like system is found in DSLLAV1, which appears to protect DSLLAV1 from the parasitization of DSLV5 and DSLV8. These results suggest that novel cell-virus-virophage (CVv) tripartite infection systems of green algae, large green alga virus (Phycodnaviridae- and Mimiviridae-related), and virophage exist in Dishui Lake, which will contribute to further deep investigations of the evolutionary interaction of virophages and large alga viruses as well as of the essential roles that the CVv plays in the ecology of algae. IMPORTANCE Virophages are small parasitizing viruses of large/giant viruses. To our knowledge, the few isolated virophages all parasitize giant protozoan viruses (Mimiviridae) for propagation and form a tripartite infection system with hosts, here named the cell-virus-virophage (CVv) system. However, the CVv system remains largely unknown in environmental metagenomic data sets. In this study, we systematically investigated the metagenomic data set from the freshwater lake Dishui Lake, Shanghai, China. Consequently, four novel large alga viruses and seven virophages were discovered to coexist in Dishui Lake. Surprisingly, a novel CVv tripartite infection system comprising green algae, large green alga viruses (Phycodnaviridae- and Mimiviridae-related), and virophages was identified based on genetic link, genomic signature, and CRISPR system analyses. Meanwhile, a nonhomologous CRISPR-like system was found in Dishui Lake large alga viruses, which appears to protect the virus host from the infection of Dishui Lake virophages (DSLVs). These findings are critical to give insight into the potential significance of CVv in global evolution and ecology.


1998 ◽  
Vol 9 (9) ◽  
pp. 2681-2697 ◽  
Author(s):  
Kenneth Moss ◽  
Andrew Helm ◽  
Yun Lu ◽  
Alvina Bragin ◽  
William R. Skach

Topogenic determinants that direct protein topology at the endoplasmic reticulum membrane usually function with high fidelity to establish a uniform topological orientation for any given polypeptide. Here we show, however, that through the coupling of sequential translocation events, native topogenic determinants are capable of generating two alternate transmembrane structures at the endoplasmic reticulum membrane. Using defined chimeric and epitope-tagged full-length proteins, we found that topogenic activities of two C-trans (type II) signal anchor sequences, encoded within the seventh and eighth transmembrane (TM) segments of human P-glycoprotein were directly coupled by an inefficient stop transfer (ST) sequence (TM7b) contained within the C-terminus half of TM7. Remarkably, these activities enabled TM7 to achieve both a single- and a double-spanning TM topology with nearly equal efficiency. In addition, ST and C-trans signal anchor activities encoded by TM8 were tightly linked to the weak ST activity, and hence topological fate, of TM7b. This interaction enabled TM8 to span the membrane in either a type I or a type II orientation. Pleiotropic structural features contributing to this unusual topogenic behavior included 1) a short, flexible peptide loop connecting TM7a and TM7b, 2) hydrophobic residues within TM7b, and 3) hydrophilic residues between TM7b and TM8.


Brain ◽  
2020 ◽  
Vol 143 (5) ◽  
pp. 1512-1524 ◽  
Author(s):  
Ilaria Vanni ◽  
Laura Pirisinu ◽  
Claudia Acevedo-Morantes ◽  
Razieh Kamali-Jamil ◽  
Vineet Rathod ◽  
...  

Abstract Prions are transmissible agents causing lethal neurodegenerative diseases that are composed of aggregates of misfolded cellular prion protein (PrPSc). Despite non-fibrillar oligomers having been proposed as the most infectious prion particles, prions purified from diseased brains usually consist of large and fibrillar PrPSc aggregates, whose protease-resistant core (PrPres) encompasses the whole C-terminus of PrP. In contrast, PrPSc from Gerstmann-Sträussler-Scheinker disease associated with alanine to valine substitution at position 117 (GSS-A117V) is characterized by a small protease-resistant core, which is devoid of the C-terminus. We thus aimed to investigate the role of this unusual PrPSc in terms of infectivity, strain characteristics, and structural features. We found, by titration in bank voles, that the infectivity of GSS-A117V is extremely high (109.3 ID50 U/g) and is resistant to treatment with proteinase K (109.0 ID50 U/g). We then purified the proteinase K-resistant GSS-A117V prions and determined the amount of infectivity and PrPres in the different fractions, alongside the morphological characteristics of purified PrPres aggregates by electron microscopy. Purified pellet fractions from GSS-A117V contained the expected N- and C-terminally cleaved 7 kDa PrPres, although the yield of PrPres was low. We found that this low yield depended on the low density/small size of GSS-A117V PrPres, as it was mainly retained in the last supernatant fraction. All fractions were highly infectious, thus confirming the infectious nature of the 7 kDa PrPres, with infectivity levels that directly correlated with the PrPres amount detected. Finally, electron microscopy analysis of these fractions showed no presence of amyloid fibrils, but only very small and indistinct, non-fibrillar PrPresparticles were detected and confirmed to contain PrP via immunogold labelling. Our study demonstrates that purified aggregates of 7 kDa PrPres, spanning residues ∼90–150, are highly infectious oligomers that encode the biochemical and biological strain features of the original sample. Overall, the autocatalytic behaviour of the prion oligomers reveals their role in the propagation of neurodegeneration in patients with Gerstmann-Sträussler-Scheinker disease and implies that the C-terminus of PrPSc is dispensable for infectivity and strain features for this prion strain, uncovering the central PrP domain as the minimal molecular component able to encode infectious prions. These findings are consistent with the hypothesis that non-fibrillar prion particles are highly efficient propagators of disease and provide new molecular and morphological constraints on the structure of infectious prions.


Author(s):  
Xue Tang ◽  
Juan Shao ◽  
Xiaohong Qin

KCNH voltage-gated potassium channels play critical roles in regulating cellular functions. The channel is composed of four subunits, each of which contains six transmembrane helices forming the central pore. The cytoplasmic parts of the subunits present a Per–Arnt–Sim (PAS) domain at the N-terminus and a cyclic nucleotide-binding homology domain at the C-terminus. PAS domains are conserved from prokaryotes to eukaryotes and are involved in sensing signals and cellular responses. To better understand the functional roles of PAS domains in KCNH channels, the structure of this domain from the humanether-à-go-gochannel (hEAG channel) was determined. By comparing it with the structures of theHomo sapiensEAG-related gene (hERG) channel and theDrosophilaEAG-like K+(dELK) channel and analyzing the structural features of the hEAG channel, it was identified that a hydrophobic patch on the β-sheet may mediate interaction between the PAS domain and other regions of the channel to regulate its functions.


2004 ◽  
Vol 15 (4) ◽  
pp. 1609-1622 ◽  
Author(s):  
Masamitsu Sato ◽  
Leah Vardy ◽  
Miguel Angel Garcia ◽  
Nirada Koonrugsa ◽  
Takashi Toda

The Dis1/TOG family plays a pivotal role in microtubule organization. In fission yeast, Alp14 and Dis1 share an essential function in bipolar spindle formation. Here, we characterize Alp7, a novel coiled-coil protein that is required for organization of bipolar spindles. Both Alp7 and Alp14 colocalize to the spindle pole body (SPB) and mitotic spindles. Alp14 localization to these sites is fully dependent upon Alp7. Conversely, in the absence of Alp14, Alp7 localizes to the SPBs, but not mitotic spindles. Alp7 forms a complex with Alp14, where the C-terminal region of Alp14 interacts with the coiled-coil domain of Alp7. Intriguingly, this Alp14 C terminus is necessary and sufficient for mitotic spindle localization. Overproduction of either full-length or coiled-coil region of Alp7 results in abnormal V-shaped spindles and stabilization of interphase microtubules, which is induced independent of Alp14. Alp7 may be a functional homologue of animal TACC. Our results shed light on an interdependent relationship between Alp14/TOG and Alp7. We propose a two-step model that accounts for the recruitment of Alp7 and Alp14 to the SPB and microtubules.


1995 ◽  
Vol 311 (2) ◽  
pp. 699-704 ◽  
Author(s):  
A Muraoka ◽  
M Hashiramoto ◽  
A E Clark ◽  
L C Edwards ◽  
H Sakura ◽  
...  

C-terminally truncated and mutated forms of GLUT1 have been constructed to determine the minimum structure at the C-terminus required for glucose transport activity and ligand binding at the outer and inner binding sites. Four truncated mutants have been constructed (CTD24 to CTD27) in which 24 to 27 amino acids are deleted. In addition, point substitutions of R468-->L, F467-->L and G466-->E have been produced. Chinese hamster ovary clones which were transfected with these mutant GLUT1s were shown, by Western blotting and cell-surface carbohydrate labelling, to have expression levels which were comparable with the wild-type clone. Wild-type levels of 2-deoxy-D-glucose transport activity were retained only in the clone transfected with the construct in which 24 amino acids were deleted (CTD24). The CTD25, CTD26 and CTD27 clones showed markedly reduced transport activity. From a kinetic comparison of the CTD24 and CTD26 clones it was found that the reduced transport was mainly associated with a reduced Vmax. value for 2-deoxy-D-glucose uptake but with a slight lowering of the Km. These data establish that the 24 amino acids at the C-terminus of GLUT1 are not required for the transport catalysis. However, the point mutations of F467L and G466E (26 and 27 residues from the C-terminus) did not significantly perturb the kinetics of 2-deoxy-D-glucose transport. The substitution of R468L produced a slight, but significant, lowering of the Km. The ability of the truncated GLUt1s to bind the exofacial ligand, 2-N-4-(1-zai-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(D-mannos- 4-yl-oxy) -2-propylamine (ATB-BMPA), and the endofacial ligand, cytochalasin B, were assessed by photolabelling procedures. The ability to bind ATB-BMPA was retained only in the CTD24 truncated mutant and was reduced to levels comparable with those of the non-transfected clone in the other mutant clones. Cytochalasin B labelling was unimpaired in all four mutated GLUT1s. These data establish that a minimum structure at the C-terminus of GLUT1, which is required for the conformational change to expose the exofacial site, includes amino acids at positions Phe-467 and Arg-468; however, these amino acids are not individually essential.


2006 ◽  
Vol 273 (1605) ◽  
pp. 3101-3123 ◽  
Author(s):  
Pierre Berthier ◽  
Laurent Excoffier ◽  
Manuel Ruedi

The two sibling bat species Myotis myotis and Myotis blythii occur in sympatry over wide areas of Southern and Central Europe. Morphological, ecological and previous genetic evidences supported the view that the two species constitute two well-differentiated groups, but recent phylogenetic analyses have shown that the two species shared some mtDNA haplotypes when they occurred in sympatry. In order to see whether some genetic exchange occurred between the two species, we sequenced a highly variable segment of the mitochondrial control region in both species living in sympatry and in allopatry. We also analysed the nuclear diversity of 160 individuals of both species found in two mixed nursery colonies located north and south of the Alps. MtDNA analysis confirmed that European M. blythii share multiple, identical or very similar haplotypes with M. myotis . Since allopatric Asian M. blythii presents mtDNA sequences that are very divergent from those of the two species found in Europe, we postulate that the mitochondrial genome of the European M. blythii has been replaced by that of M. myotis . The analysis of nuclear diversity shows a strikingly different pattern, as both species are well differentiated within mixed nursery colonies ( F ST =0.18). However, a Bayesian analysis of admixture reveals that the hybrids can be frequently observed, as about 25% of sampled M. blythii show introgressed genes of M. myotis origin. Contrastingly, less than 4% of the M. myotis analysed were classified as non-parental genotypes, revealing an asymmetry in the pattern of hybridization between the two species. These results show that the two species can interbreed and that the hybridization is still ongoing in the areas of sympatry. The persistence of well-differentiated nuclear gene pools, in spite of an apparent replacement of mitochondrial genome in European M. blythii by that of M. myotis , is best explained by a series of introgression events having occurred repeatedly during the recent colonization of Europe by M. blythii from Asia. The sharp contrast obtained from the analysis of mitochondrial and nuclear markers further points to the need to cautiously interpret results based on a single class of genetic markers.


2011 ◽  
Vol 22 (24) ◽  
pp. 4726-4739 ◽  
Author(s):  
Noa Furth ◽  
Or Gertman ◽  
Ayala Shiber ◽  
Omri S. Alfassy ◽  
Itamar Cohen ◽  
...  

Proper functioning of the protein-folding quality control network depends on the network's ability to discern diverse structural perturbations to the native states of its protein substrates. Despite the centrality of the detection of misfolded states to cell home­ostasis, very little is known about the exact sequence and structural features that mark a protein as being misfolded. To investigate these features, we studied the requirements for the degradation of the yeast kinetochore protein Ndc10p. Mutant Ndc10p is a substrate of a protein-folding quality control pathway mediated by the E3 ubiquitin (Ub) ligase Doa10p at the endoplasmic reticulum (ER)/nuclear envelope membrane. Analysis of Ndc10p mutant derivatives, employing a reverse genetics approach, identified an autonomous quality control–associated degradation motif near the C-terminus of the protein. This motif is composed of two indispensable hydrophobic elements: a hydrophobic surface of an amphipathic helix and a loosely structured hydrophobic C-terminal tail. Site-specific point mutations expose these elements, triggering ubiquitin-mediated and HSP70 chaperone–dependent degradation of Ndc10p. These findings substantiate the ability of the ER quality control system to recognize subtle perturbation(s) in the native structure of a nuclear protein.


Sign in / Sign up

Export Citation Format

Share Document