brown seaweed
Recently Published Documents


TOTAL DOCUMENTS

990
(FIVE YEARS 342)

H-INDEX

63
(FIVE YEARS 10)

Discover Food ◽  
2022 ◽  
Vol 2 (1) ◽  
Author(s):  
G. D. T. M. Jayasinghe ◽  
B. K. K. K. Jinadasa ◽  
N. A. G. Sadaruwan

AbstractAlginates are natural polysaccharides that are extracted from brown seaweed varieties and it is widely used for their rheological properties. The main step in the extraction protocol of sodium alginate is alkaline extraction. Sodium alginate was produced by dipping the seaweed in 1% formaldehyde and 2.5% of sodium carbonate solution and properties were studied following the standard methods. The amount of sodium alginate yield was 31.7% in Sargassum wightii. The moisture content and the ash content were recorded at 16.82% and 5.20%, respectively. The viscosity and the gel strength were noted as 40 vcP, 4.54 × 10–2 kN with 0.1 M CaCl2 and 6.86 × 10–2 kN with 0.2 M CaCl2 respectively. This study of the extraction method and its properties reveal that Sargassum wightii brown seaweed species have a high affinity to extract the alginate.


2022 ◽  
Vol 61 ◽  
pp. 102533
Author(s):  
Nalae Kang ◽  
Seyeon Oh ◽  
Seo-Young Kim ◽  
Hyosang Ahn ◽  
Myeongjoo Son ◽  
...  

Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 28
Author(s):  
D. P. Nagahawatta ◽  
Hyun-Soo Kim ◽  
Young-Heun Jee ◽  
Thilina U. Jayawardena ◽  
Ginnae Ahn ◽  
...  

Sargassum horneri is an invasive brown seaweed that grows along the shallow coastal areas of the Korean peninsula, which are potentially harmful to fisheries and natural habitats in the areas where it is accumulated. Therefore, the author attempted to evaluate the anti-inflammatory mechanism of Sargachromenol isolated from S. horneri against particulate matter (PM)-stimulated RAW 264.7 macrophages. PM is a potent inducer of respiratory diseases such as lung dysfunctions and cancers. In the present study, the anti-inflammatory properties of Sargachromenol were validated using enzyme-linked immunosorbent assay (ELISA), Western blots, and RT-qPCR experiments. According to the results, Sargachromenol significantly downregulated the PM-induced proinflammatory cytokines, Prostaglandin E2 (PGE2), and Nitric Oxide (NO) secretion via blocking downstream activation of Toll-like receptor (TLR)-mediated nuclear factor kappa B (NF-κB) and MAPKs phosphorylation. Thus, Sargachromenol is a potential candidate for innovation in various fields including pharmaceuticals, cosmeceuticals, and functional food.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Diogo Nunes ◽  
Rebeca André ◽  
Asma Ressaissi ◽  
Bernardo Duarte ◽  
Ricardo Melo ◽  
...  

Fucus vesiculosus L. is a common coastal brown seaweed associated with various benefits to human health due to its phenolic content and nutrients and is used as food through different methods of consumption. This study aims to evaluate the influence of the seaweed’s gender and growth stage on different types of biological activities as well as its chemical constitution and elements present. Akin to food preparation, aqueous extracts of the seaweed were prepared at 25 °C (salad) and 100 °C (soup). Biological activities were determined by measuring total phenol content (TPC), antioxidant activity and inhibition of acetylcholinesterase (AChE). Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS/MS) was used for compound identification, and elemental analysis was carried out by using Total Reflection X-ray Fluorescence Spectrometry (TXRF). Older females and males had higher TPC compared to the new ones at 100 °C. Antioxidant activity depended on the extraction temperature but was higher for the youngest male at 100 °C. AChE inhibitory activity was higher for older males at 25 °C, but at 100 °C it was higher for older females. Primary metabolites and various phloroglucinol were the main compounds identified. Additionally, since this seaweed is often harvested in estuarine systems with high anthropogenic impacts, its safety was evaluated through the evaluation of the sample’s metal content. The heavy metals detected are within the limits established by various regulating entities, pointing to a safe food source.


2021 ◽  
pp. 381-392
Author(s):  
Svetlana Evgen'yevna Fomenko ◽  
Natal'ya Fedorovna Kushnerova ◽  
Vladimir Gennad'yevich Sprygin ◽  
Elena Sergeyevna Drugova ◽  
Valeriy Yur'yevich Merzluakov ◽  
...  

The object of the present  study was a lipid complex isolated from the thallus of the brown seaweed Sargassum pallidum (Turner) C. Agardh (Sargassum pallidum). The lipid complex of S. pallidum included glycolipids in an amount of 35.1%, neutral lipids – 26.4%, phospholipids – 8.4%, as well as photosynthetic pigments – 30.1% of the total lipids. The content of polyunsaturated fatty acids (PUFAs) was 63.5% of the total fatty acids, of which PUFAs of the n-6 family prevailed (46.5%), the amount of PUFAs of the n-3 family was 17%. Under conditions of fat load, the effect of the lipid complex of S. pallidum and the reference drug Omega-3 on the parameters of lipid metabolism and antioxidant protection in the blood plasma and liver of rats was studied. The fat load was carried out by feeding the animals for 30 days with a standard vivary diet with the addition of 2% cholesterol and 20% beef tallow of the total formulation. The addition of the S. pallidum lipid complex (1 g/kg of body weight) to the fat diet had a hypolipidemic effect, which manifested in the restoration of weight characteristics (body and specific liver’s weight), parameters of liver lipid metabolism (cholesterol, triacylglycerols, free fatty acids), esterifying function of the liver, as well as the content of lipoproteins in the blood plasma. The combined action of n-3 and n-6 PUFAs in the lipid complex of S. pallidum promoted the induction of enzymes of the glutathione circle, providing the antioxidant defense system of the organism. The lipid complex of the brown seaweed S. pallidum was not inferior to the reference preparation Omega-3 in restoration of lipid metabolism and antioxidant defense system of animals on a high-fat diet, and even surpassed that in some parameters.


2021 ◽  
Author(s):  
Ana Moral ◽  
Roberto Aguado ◽  
Jose Amaya ◽  
Antonio Tijero ◽  
Menta Ballesteros

Abstract In this work, the brown alga Dictyota dichotoma was explored as a new reinforcing material for papermaking. Performing the typical chemical tests for cellulosic substrates on D. dichotoma evidenced large amounts of ethanol:benzene extractable substances (7.2%) and ashes, algae-specific results. Also, even if lipophilic compounds are removed, brown seaweed are not a primary source of fibers because it contains low proportion of cellulose. However, its elevated content of insoluble carbohydrates (51.4%) suggest there is some potential in association with conventional cellulosic pulps, as fibrous elements contribute to sheet forming and other components fill the spaces in the paper web without noteworthy loss of strength. Extraction was carried out with clean processes: hydrogen peroxide and mixtures (hydrogen peroxide-hydrochloric acid and hydrogen peroxide-sodium perborate), sodium hydroxide and sodium hypochlorite, always aiming for low reagent concentrations, in the range of 1-12%. The results show that sodium hydroxide and sodium hypochlorite were the treatments that lead to paper sheets with better structural and mechanical properties without further bleaching or refining, thus highlighting the suitability of these algae for papermaking applications.


2021 ◽  
Author(s):  
Łukasz Łangowski ◽  
Oscar Goñi ◽  
Elomofe Ikuyinminu ◽  
Ewan Feeney ◽  
Shane O’Connell

ABSTRACTReduction in the emissions of the greenhouse gas nitrous oxide and nitrogen (N) pollution of ground water by improving nitrogen use efficiency (NUE) in crops is urgently required in pursuit of a sustainable agricultural future. Utilising an engineered biostimulant (PSI-362) derived from the brown seaweed Ascophyllum nodosum, we examined its effect on wheat seedling growth dynamics and mechanistic spatiotemporal changes at transcriptional and biochemical levels in relation to N uptake, assimilation and NUE. PSI-362-mediated biomass increase was associated with increased nitrate uptake and N assimilation in the form of glutamate, glutamine, free amino acids, soluble proteins and total chlorophyll. Phenotypical and biochemical analysis were supported by evaluation of differential expression of genetic markers involved in nitrate perception and transport (TaNRT1.1/NPF6.3), and assimilation (TaNR1 and TaNiR1, TaGDH2, TaGoGAT, TaGS1). Finally, a comparative analysis of the PSI-362 and two generic Ascophyllum nodosum extracts (ANEs) demonstrated that the NUE effect greatly differs depending on the ANE biostimulant used. In the current context of climate warming the transition of agriculture to a more sustainable model is urgently required. Application and adoption of precision biostimulants creates an opportunity for sustainable crop management, reduced production cost and environmental pollution, while maintaining yields.


Author(s):  
Margrethe Gaardløs ◽  
Tonje Marita Bjerkan Heggeset ◽  
Anne Tøndervik ◽  
David Tezé ◽  
Birte Svensson ◽  
...  

The structure and functional properties of alginates are dictated by the monomer composition and molecular weight distribution. Mannuronan C-5 epimerases determine the monomer composition by catalysing the epimerization of β- d -mannuronic acid residues (M) into α- l -guluronic acid residues (G). The molecular weight is affected by alginate lyases, which catalyse a β-elimination mechanism that cleaves alginate chains. The reaction mechanisms for the epimerization and lyase reactions are similar and some enzymes can perform both reactions. These dualistic enzymes share high sequence identity with mannuronan C-5 epimerases without lyase activity. The mechanism behind their activity and the amino acid residues responsible for it are still unknown. We investigate mechanistic determinants involved in the bifunctional epimerase and lyase activity of AlgE7 from Azotobacter vinelandii . Based on sequence analyses, a range of AlgE7 variants were constructed and subjected to activity assays and product characterization by NMR. Our results show that calcium promotes lyase activity whereas NaCl reduces the lyase activity of AlgE7. By using defined poly-M and poly-MG substrates, the preferred cleavage sites of AlgE7 were found to be M|XM and G|XM, where X can be either M or G. From the study of AlgE7 mutants, R148 was identified as an important residue for the lyase activity, and the point mutant R148G resulted in an enzyme with only epimerase activity. Based on the results obtained in the present study we suggest a unified catalytic reaction mechanism for both epimerase and lyase activity where H154 functions as the catalytic base and Y149 as the catalytic acid. Importance Post-harvest valorisation and upgrading of algal constituents is a promising strategy in the development of a sustainable bioeconomy based on algal biomass. In this respect, alginate epimerases and lyases are valuable enzymes for tailoring of the functional properties of alginate, a polysaccharide extracted from brown seaweed with numerous applications in food, medicine, and material industries. By providing a better understanding of the catalytic mechanism and of how the two enzyme actions can be altered by changes in reaction conditions, this study opens for further applications of bacterial epimerases and lyases in enzymatic tailoring of alginate polymers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Youyoung Choi ◽  
Shin Ja Lee ◽  
Hyun Sang Kim ◽  
Jun Sik Eom ◽  
Seong Uk Jo ◽  
...  

AbstractSeveral seaweed extracts have been reported to have potential antimethanogenic effects in ruminants. In this study, the effect of three brown seaweed species (Undaria pinnatifida, UPIN; Sargassum fusiforme, SFUS; and Sargassum fulvellum, SFUL) on rumen fermentation characteristics, total gas, methane (CH4), carbon dioxide (CO2) production, and microbial populations were investigated using an in vitro batch culture system. Seaweed extract and its metabolites, total flavonoid and polyphenol contents were identified and compared. For the in vitro batch, 0.25 mg∙mL−1 of each seaweed extract were used in 6, 12, 24, 36 and 48 h of incubation. Seaweed extract supplementation decreased CH4 yield and its proportion to total gas production after 12, 24, and 48 h of incubation, while total gas production were not significantly different. Total volatile fatty acid and molar proportion of propionate increased with SFUS and SFUL supplementation after 24 h of incubation, whereas UPIN was not affected. Additionally, SFUS increased the absolute abundance of total bacteria, ciliate protozoa, fungi, methanogenic archaea, and Fibrobacter succinogenes. The relative proportions of Butyrivibrio fibrisolvens, Butyrivibrio proteoclasticus, and Prevotella ruminicola were lower with seaweed extract supplementation, whereas Anaerovibrio lipolytica increased. Thus, seaweed extracts can decrease CH4 production, and alter the abundance of rumen microbial populations.


Sign in / Sign up

Export Citation Format

Share Document