Ionic liquid-based multi-stage sugaring-out extraction of lactic acid from actual lignocellulosic fermentation broth

Author(s):  
Yaqin Sun

Abstract In this study, ionic liquid-based sugaring-out extraction was developed to separate lactic acid from the synthetic solution and actual lignocellulosic fermentation broth. Except for [EOHmim]BF4, the ILs with BF4− and OTF− anion can form aqueous two-phase (ATP) systems with the aid of saccharides. With the same kind of saccharides, the ATP formation ability of ILs could be promoted by increasing the side-chain length of ILs in the order of [Hmim]BF4 ≈ [Bmim]BF4 ˃ [Emim]BF4 due to the decrease in ILs’ kosmotropicity. On the other hand, for the same type of ILs, an ATP system was formed more easily with glucose than with xylose. When IL concentration varied from 35% (w/w) to 40% (w/w) at a low glucose concentration of 15% (w/w), an interesting phase reversal was observed. When lactic acid was undissociated at pH 2.0, 51.8% LA and 92.3% [Bmim]BF4 were partitioned to the top phase, and 97.0% glucose to the bottom phase using an ATP system consisting of 25% (w/w) glucose and 45% (w/w) IL. The total recovery of LA would increase to 89.0% in three-stage sugaring-out extraction from synthetic solution. In three-stage sugaring-out extraction from the filtered and unfiltered fermentation broth obtained via simultaneous saccharification and co-fermentation (SSCF) of acid-pretreated corn stover by microbial consortium, the total recovery of LA was 89.5% and 89.8%, respectively. Furthermore, the total removal ratio of cells and pigments from the unfiltered broth was 68.4% and 65.4%, respectively. The results support IL-based sugaring-out extraction as a potential method for the recovery of lactic acid from actual fermentation broth.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xu Zhou ◽  
Yaqin Sun ◽  
Hongjun Zhan ◽  
Haijun Liu ◽  
Xiaoyan Wang ◽  
...  

AbstractIn this study, ionic liquid-based sugaring-out extraction was developed to separate lactic acid from the synthetic solution and actual lignocellulosic fermentation broth. Except for [EOHmim]BF4, the ILs with BF4− and OTF− anion can form aqueous two-phase system (ATPS) with the aid of saccharides. With the same kind of saccharides, the ATPS formation ability of ILs could be promoted by increasing the side-chain length of ILs in the order of [Hmim]BF4 ≈ [Bmim]BF4 ˃ [Emim]BF4 due to the decrease in ILs’ kosmotropicity. On the other hand, for the same type of ILs, an ATPS was formed more easily with glucose than with xylose. When IL concentration varied from 35% (w/w) to 40% (w/w) at a low glucose concentration of 15% (w/w), an interesting phase reversal was observed. When lactic acid was undissociated at pH 2.0, 51.8% LA and 92.3% [Bmim]BF4 were partitioned to the top phase, and 97.0% glucose to the bottom phase using an ATPS consisting of 25% (w/w) glucose and 45% (w/w) IL. The total recovery of LA would increase to 89.0% in three-stage sugaring-out extraction from synthetic solution. In three-stage sugaring-out extraction from the filtered and unfiltered fermentation broth obtained via simultaneous saccharification and co-fermentation (SSCF) of acid-pretreated corn stover by the microbial consortium, the total recovery of LA was 89.5% and 89.8%, respectively. Furthermore, the total removal ratio of cells and pigments from the unfiltered broth was 68.4% and 65.4%, respectively. The results support IL-based sugaring-out extraction as a potential method for the recovery of lactic acid from actual fermentation broth. Graphical Abstract


RSC Advances ◽  
2016 ◽  
Vol 6 (86) ◽  
pp. 82571-82580 ◽  
Author(s):  
Muhammad Hakimi Hadzir ◽  
Sahar Abbasiliasi ◽  
Arbakariya B. Ariff ◽  
Siti Baidurah Yusoff ◽  
Hui Suan Ng ◽  
...  

Evaluations of ILATPSs were performed with a variety of ionic liquids and salts as phase components to figure out their competencies in the recovery of lipase from a fermentation broth of E. coli using banana waste as a substrate.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miguel Flores-Gatica ◽  
Héctor Castañeda-Aponte ◽  
Mónica Rebeca Gil-Garzon ◽  
Liliana Monserrath Mora-Galvez ◽  
Martin Paul Banda-Magaña ◽  
...  

AbstractGiven its biocompatibility, rheological, and physiological properties, hyaluronic acid (HA) has become a biomaterial of increasing interest with multiple applications in medicine and cosmetics. In recent decades, microbial fermentations have become an important source for the industrial production of HA. However, due to its final applications, microbial HA must undergo critical and long purification processes to ensure clinical and cosmetic grade purity. Aqueous two-phase systems (ATPS) have proven to be an efficient technique for the primary recovery of high-value biomolecules. Nevertheless, their implementation in HA downstream processing has been practically unexplored. In this work, polyethylene glycol (PEG)–citrate ATPS were used for the first time for the primary recovery of HA produced with an engineered strain of Streptococcus equi subsp. zooepidemicus. The effects of PEG molecular weight (MW), tie-line length (TLL), volume ratio (VR), and sample load on HA recovery and purity were studied with a clarified fermentation broth as feed material. HA was recovered in the salt-rich bottom phase, and its recovery increased when a PEG MW of 8000 g mol−1 was used. Lower VR values (0.38) favoured HA recovery, whereas purity was enhanced by a high VR (3.50). Meanwhile, sample load had a negative impact on both recovery and purity. The ATPS with the best performance was PEG 8000 g mol−1, TLL 43% (w/w), and VR 3.50, showing 79.4% HA recovery and 74.5% purity. This study demonstrated for the first time the potential of PEG–citrate ATPS as an effective primary recovery strategy for the downstream process of microbial HA.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012039
Author(s):  
Y H Choi ◽  
S K Mah ◽  
Y S Ng ◽  
S Y Lee

Abstract Microalgae have gained considerable attention due to their high-value biomolecules and potential applications in the pharmaceutical, food, medical and cosmeceutical field. However, the conventional biorefinery process of microalgae are costly, energy-intensive, and time-consuming. Aqueous two-phase system (ATPS) has emerged as a potential technique for the separation and fractionation of biomolecules in the biorefinery field. This study proposed the application of ionic liquid (IL) based ATPS for the fractionation of high-value phycocyanin and carbohydrates from a crude extract of Spirulina platensis.The biomass was first lysed by a high-speed homogenization with a solid to liquid ratio (S/L) of 1:10 and an operation time of 5 min to achieve optimum yields of multiple products. Next, the feasibility of several IL-based ATPS with phosphate/citrate buffer was evaluated by investigating the effects of cation, anion, and alkyl chain’s length of ILs. Among the IL-based ATPS, the system comprising of 1-butyl-1-methylpyrrolidinium dicyanamide and citrate buffer demonstrated the optimum phycocyanin extraction efficiency of 83.26 ± 0.05% at the top phase and a concurrent recovery of 73.89±0.06% carbohydrate at the bottom phase. In this work, the IL-based ATPS performed better than conventional polymer-based ATPS. This work suggests that IL-based ATPS allows efficient fractionation of phycocyanin and carbohydrates.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6526-6538
Author(s):  
Yueying Chen ◽  
Aiguo Xue ◽  
Haomin Jiang ◽  
Yujuan Cheng ◽  
Yuan Ren ◽  
...  

Lignin depolymerization through an oxidation method could provide value-added products, but it is challenging in terms of recovering catalysts or separating products in time to avoid over-oxidation. In this study, a process of selectively oxidative degradation of lignin model compounds was operated in a two-phase reaction system. Lignin model compounds of 4-benzyloxyphenol (PBP) or guaiacylglycerol-β-guaiacyl ether (GGE) in a bottom phase of 1-butyl-3-methylimidazole chloride ([BMIM]Cl) ionic liquid were selectively oxidized by H2O2 in the presence of a solid acid (SO42-/Fe2O3-ZrO2), and the degradation products immediately diffused into the upper organic solvent phase (butyl acetate). In this kind of reaction system, the yield of the products was improved due to the prolonged life of ∙OH in ionic liquid, and the product selectivity was maintained due to the timely product separation, and the ionic liquid and the catalyst were easily recycled.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1811
Author(s):  
Valeriia Rostovtseva ◽  
Alexandra Pulyalina ◽  
Roman Dubovenko ◽  
Ilya Faykov ◽  
Kseniya Subbotina ◽  
...  

Modification of polymer matrix by hybrid fillers is a promising way to produce membranes with excellent separation efficiency due to variations in membrane structure. High-performance membranes for the pervaporation dehydration were produced by modifying poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) to facilitate lactic acid purification. Ionic liquid (IL), heteroarm star macromolecules (HSM), and their combination (IL:HSM) were employed as additives to the polymer matrix. The composition and structure of hybrid membranes were characterized by X-ray diffraction and FTIR spectroscopy. Scanning electron microscopy was used to investigate the membranes surface and cross-section morphology. It was established that the inclusion of modifiers in the polymer matrix leads to the change of membrane structure. The influence of IL:HSM was also studied via sorption experiments and pervaporation of water‒lactic acid mixtures. Lactic acid is an essential compound in many industries, including food, pharmaceutical, chemical, while the recovering and purifying account for approximately 50% of its production cost. It was found that the membranes selectively remove water from the feed. Quantum mechanical calculations determine the favorable interactions between various membrane components and the liquid mixture. With IL:HSM addition, the separation factor and performance in lactic acid dehydration were improved compared with pure polymer membrane. The best performance was found for (HSM: IL)-PPO/UPM composite membrane, where the permeate flux and the separation factor of about 0.06 kg m−2 h−1 and 749, respectively, were obtained. The research results demonstrated that ionic liquids in combination with star macromolecules for membrane modification could be a promising approach for membrane design.


2021 ◽  
Vol 104 ◽  
pp. 142-151
Author(s):  
Chenglong Li ◽  
Ming Gao ◽  
Wenbin Zhu ◽  
Nuohan Wang ◽  
Xiaoyu Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document