synthetic solution
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 59)

H-INDEX

13
(FIVE YEARS 5)

YMER Digital ◽  
2022 ◽  
Vol 21 (01) ◽  
pp. 98-111
Author(s):  
Dr. Srinivas Tadepalli ◽  
◽  
Dr. K.S.R Murthy ◽  
Dr. P Suresh Kumar ◽  
Dr. Prasanthi Kumari Nunna ◽  
...  

he results of the experiments showed that bed weight, flow rate, and initial metal ion concentration all play a role in the removal of Cr (III) and Fe (II). The optimized break through curve was obtained at 36cm bed height and 10ml/min for chromium where 97.5 to 100% removal was observed at a saturation time of 500-600 min. With the increase in bed height from 12cm to 36cm, both the breakthrough and saturation times for Cr (III) increased. The break through time at 12cm, 24cm, 36cm and 10ml/min for Cr (III) were 70 min, 105 min, and 35 min respectively. The saturation time for Cr (III) at 12cm, 24cm, 36cm and 10ml/min were 460 min, 490 min, and 500 min respectively. Similarly, the break through time for Fe (II) at 12cm, 24cm, 36cm and 10ml/min were 70 min, 80 min, and 100 min respectively. At 12cm, 24cm, 36cm, and 10ml/min, the saturation time for Fe (III) was 340 minutes, 360 minutes, and 430 minutes, respectively. Overall in the column performance comparison between synthetic solution and industrial effluents for chromium, synthetic solution performance was more superior at fixed volumetric flow rates of 10 ml/min and bed heights ranging from 12 cm to 36 cm But the reverse trend was observed in case of fixed bed heights of 36 cm (150 g) and variation of volumetric flow rates from 10ml/min to 30ml/min which indicates that industrial effluent performance was superior when compared to synthetic solution for heavy metal removal.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 165
Author(s):  
Angelo Lerro ◽  
Piero Gili ◽  
Marco Pisani

In the area of synthetic sensors for flow angle estimation, the present work aims to describe the verification in a relevant environment of a physics-based approach using a dedicated technological demonstrator. The flow angle synthetic solution is based on a model-free, or physics-based, scheme and, therefore, it is applicable to any flying body. The demonstrator also encompasses physical sensors that provide all the necessary inputs to the synthetic sensors to estimate the angle-of-attack and the angle-of-sideslip. The uncertainty budgets of the physical sensors are evaluated to corrupt the flight simulator data with the aim of reproducing a realistic scenario to verify the synthetic sensors. The proposed approach for the flow angle estimation is suitable for modern and future aircraft, such as drones and urban mobility air vehicles. The results presented in this work show that the proposed approach can be effective in relevant scenarios even though some limitations can arise.


Author(s):  
Tung-Lung Wu ◽  
Jenn-Kai Tsai ◽  
Ya-Zhu Song ◽  
Meng-Xiu Chen ◽  
Tian-Chiuan Wu ◽  
...  

This study explores the influence of molar ratio of the synthetic solution of methylammonium iodide (MAI) and PbI2 on perovskite solar cells. The complete perovskite crystals must be produced in a low-humidity environment. The substrate is spin-coated in the adjusted MAPbI3 synthesis solution and annealed by using a nitrogen furnace tube to form perovskite crystals. During the crystallization of MAPbI3, some of the PbI2 remains, which improves the efficiency of the perovskite solar cell. Therefore, we adjust the molar concentration of MAI to find the appropriate amount of the PbI2 residual. We fix the MAI molar concentration at 1 M and adjust the PbI2 molar concentration from 0.8 M to 1.4 M. The molar ratios of MAI and PbI2 are, then, 1:0.8, 1:1, 1:1.2, and 1:1.4, respectively. Then, we use UV–vis, FE-SEM, and photoelectric conversion efficiency (PCE) measurements for comparing the growth of perovskite crystals and their photoelectric characteristics. The results show that 1.2 M of PbI2 is the most appropriate concentration for perovskite solar cells among the adjusted concentrations.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xu Zhou ◽  
Yaqin Sun ◽  
Hongjun Zhan ◽  
Haijun Liu ◽  
Xiaoyan Wang ◽  
...  

AbstractIn this study, ionic liquid-based sugaring-out extraction was developed to separate lactic acid from the synthetic solution and actual lignocellulosic fermentation broth. Except for [EOHmim]BF4, the ILs with BF4− and OTF− anion can form aqueous two-phase system (ATPS) with the aid of saccharides. With the same kind of saccharides, the ATPS formation ability of ILs could be promoted by increasing the side-chain length of ILs in the order of [Hmim]BF4 ≈ [Bmim]BF4 ˃ [Emim]BF4 due to the decrease in ILs’ kosmotropicity. On the other hand, for the same type of ILs, an ATPS was formed more easily with glucose than with xylose. When IL concentration varied from 35% (w/w) to 40% (w/w) at a low glucose concentration of 15% (w/w), an interesting phase reversal was observed. When lactic acid was undissociated at pH 2.0, 51.8% LA and 92.3% [Bmim]BF4 were partitioned to the top phase, and 97.0% glucose to the bottom phase using an ATPS consisting of 25% (w/w) glucose and 45% (w/w) IL. The total recovery of LA would increase to 89.0% in three-stage sugaring-out extraction from synthetic solution. In three-stage sugaring-out extraction from the filtered and unfiltered fermentation broth obtained via simultaneous saccharification and co-fermentation (SSCF) of acid-pretreated corn stover by the microbial consortium, the total recovery of LA was 89.5% and 89.8%, respectively. Furthermore, the total removal ratio of cells and pigments from the unfiltered broth was 68.4% and 65.4%, respectively. The results support IL-based sugaring-out extraction as a potential method for the recovery of lactic acid from actual fermentation broth. Graphical Abstract


Author(s):  
Murugan Thirumalai

Abstract: Alstonia scholaris is a biologically active and important Devil tree. The medicinal importance pharmacology importance in particulars antiulcer activity of Alstonic scholaris in albino rats were Analyzed and reported. The juice of Alstona scholaris to rats show a remarkable record with respect to ranitidine tablet (to cure ulcer). This result initiate the author to study chemo mimetic nature of plant material for the removal of heavy metal in synthetic solution also extended studies with modified Alstonia scholaris and Wrichitia Tinctoria. An adsorption of 96% in all the cases was observed. A linear correlation with R2 value of 0.977 was calculated from the linear plot of optical densities of Alstonia Scholaris and modified Alstonia Scholaris similar trend in adsorption was also noted. In the case of Wrightia Tinctoria instead of modified Alstonia Scholaris


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6176
Author(s):  
Wahid Ali Hamood Altowayti ◽  
Norzila Othman ◽  
Adel Al-Gheethi ◽  
Nur Hasniza binti Mohd Mohd Dzahir ◽  
Syazwani Mohd Asharuddin ◽  
...  

Sustainable wastewater treatment is one of the biggest issues of the 21st century. Metals such as Zn2+ have been released into the environment due to rapid industrial development. In this study, dried watermelon rind (D-WMR) is used as a low-cost adsorption material to assess natural adsorbents’ ability to remove Zn2+ from synthetic wastewater. D-WMR was characterized using scanning electron microscope (SEM) and X-ray fluorescence (XRF). According to the results of the analysis, the D-WMR has two colours, white and black, and a significant concentration of mesoporous silica (83.70%). Moreover, after three hours of contact time in a synthetic solution with 400 mg/L Zn2+ concentration at pH 8 and 30 to 40 °C, the highest adsorption capacity of Zn2+ onto 1.5 g D-WMR adsorbent dose with 150 μm particle size was 25 mg/g. The experimental equilibrium data of Zn2+ onto D-WMR was utilized to compare nonlinear and linear isotherm and kinetics models for parameter determination. The best models for fitting equilibrium data were nonlinear Langmuir and pseudo-second models with lower error functions. Consequently, the potential use of D-WMR as a natural adsorbent for Zn2+ removal was highlighted, and error analysis indicated that nonlinear models best explain the adsorption data.


Author(s):  
Saad Melhi ◽  
Saeed Ullah Jan ◽  
Adnan Ali Khan ◽  
Khan Badshah ◽  
Saeed Ullah ◽  
...  

Cadmium (II) contamination in the environment is an emerging problem due to its acute toxicity and mobility, so it is very urgent to remove this species from industrial wastewater before it is discharged into the environment. Thus, a starch-based activated carbon (AC) with a specific surface area of 1600 m2g-1 is used as an adsorbent for the capturing of toxic Cadmium (II) ions from synthetic solution. The sorbent is characterized by BET, SEM, TEM, XRD, FT-IR, TGA, and zeta potential. The maximum uptake (284 mg g-1) of Cadmium (II) ion is obtained at pH 6. The thermodynamics parameters like ∆G, ∆H, ΔS are found to be -17.42 kJmol-1, 6.49 kJ mol-1, and 55.66 Jmol-1K-1 respectively, revealing that the adsorption mechanism is endothermic, spontaneous, and feasible. The experimental data follows the D-R and Langmuir models well. The mass transfer is controlled by pseudo 2nd order kinetics. Furthermore, the density functional theory simulations demonstrate that the activated carbon strongly interacted with the Cd (II) ion through its various active sites. The adsorption energy noted for all interactive sites is highly negative (-0.45 eV to -10.03 eV), which shows that the adsorption process is spontaneous and stable which is in agreement with the experimental thermodynamics analysis.


2021 ◽  
Author(s):  
Yaqin Sun

Abstract In this study, ionic liquid-based sugaring-out extraction was developed to separate lactic acid from the synthetic solution and actual lignocellulosic fermentation broth. Except for [EOHmim]BF4, the ILs with BF4− and OTF− anion can form aqueous two-phase (ATP) systems with the aid of saccharides. With the same kind of saccharides, the ATP formation ability of ILs could be promoted by increasing the side-chain length of ILs in the order of [Hmim]BF4 ≈ [Bmim]BF4 ˃ [Emim]BF4 due to the decrease in ILs’ kosmotropicity. On the other hand, for the same type of ILs, an ATP system was formed more easily with glucose than with xylose. When IL concentration varied from 35% (w/w) to 40% (w/w) at a low glucose concentration of 15% (w/w), an interesting phase reversal was observed. When lactic acid was undissociated at pH 2.0, 51.8% LA and 92.3% [Bmim]BF4 were partitioned to the top phase, and 97.0% glucose to the bottom phase using an ATP system consisting of 25% (w/w) glucose and 45% (w/w) IL. The total recovery of LA would increase to 89.0% in three-stage sugaring-out extraction from synthetic solution. In three-stage sugaring-out extraction from the filtered and unfiltered fermentation broth obtained via simultaneous saccharification and co-fermentation (SSCF) of acid-pretreated corn stover by microbial consortium, the total recovery of LA was 89.5% and 89.8%, respectively. Furthermore, the total removal ratio of cells and pigments from the unfiltered broth was 68.4% and 65.4%, respectively. The results support IL-based sugaring-out extraction as a potential method for the recovery of lactic acid from actual fermentation broth.


2021 ◽  
Vol 43 ◽  
pp. 102284
Author(s):  
Meysam Kohzadi Chegeni ◽  
Ahmad Shahedi ◽  
Ahmad Khodadadi Darban ◽  
Ahmad Jamshidi-Zanjani ◽  
Mehdi Homaee

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 742
Author(s):  
Giorgio Pratofiorito ◽  
Harald Horn ◽  
Florencia Saravia

This work deals with the optimization of the concentration of volatile fatty acids (VFAs) using low-pressure reverse osmosis (LPRO) membranes. Membrane filtration of a synthetic solution simulating the product of biomass hydrolysis was performed. Experiments were run on two flat-sheet XLE membranes under 22 and 25 bar in continuous operation mode. Separation efficiency was evaluated for different recoveries. A correlation between the osmotic pressure of the concentrate and the parameter Rc, representative of the separation efficiency, was found. Under the conditions of the present study and taking into consideration the rejection properties of the applied membrane, a recovery of 33% and 44% is recommendable to maximize the ratio between the concentration of acetate in the concentrate and permeate and thus increase the total reclaim of acetic acid.


Sign in / Sign up

Export Citation Format

Share Document