Stress Analysis of the Lower Lumbar Spine Three-joint Complex According to Different Pelvic Incidences

Author(s):  
Qi Lai ◽  
Jun Yin ◽  
Zi Zhen Zhang ◽  
Jie Yang ◽  
Zongmiao Wan

Abstract Background: Pelvic incidence is closely related to degeneration of the facet joint and intervertebral disc and is related to the orientation of the facet joints. Currently, very few studies have been conducted on the force analysis of the three-joint complex in patients with different pelvic incidence measurements under different sports postures. We designed this study to better assess the influence of pelvic incidence on the stress of the lumbar three-joint complex. Finite element analysis can provide a biomechanical basis for the relationship between different pelvic incidences and degenerative diseases of the lower lumbar spine.Methods: We developed three nonlinear finite element models of the lumbar spine (L1-S1) with different pelvic incidences (27.44°, 47.05°, and 62.28°) and validated them to study the biomechanical response of facet joints and intervertebral discs with a follower preload of 400 N, under different torques (5 Nm, 10 Nm, and 15 Nm), and compared the stress of the three-joint complex of the lower lumbar spine (L3-S1) in different positions (flexion-extension, left-right bending, and left-right torsion).Results: In the flexion position, the stress of the disc in the low pelvic incidence model was the largest among the three models; the stress of the facet joint in the high pelvic incidence model was the largest among the three groups during the extension position. During torsion, the intradiscal pressure of the high pelvic incidence model was higher than that of the other two models in the L3/4 segment, and the maximum von Mises stress of the annulus fibrosus in the L5/S1 segment with a large pelvic incidence was greater than that of the other two models.Conclusions: Pelvic incidence is related to the occurrence and development of degenerative lumbar diseases. The stress of the lower lumbar facet joints and fibrous annulus of individuals with a high pelvic incidence is greater than that of individuals with a low pelvic incidence or a normal pelvic incidence. Although this condition only occurs in individual segments, to a certain extent, it can also reflect the influence of pelvic incidence on the force of the three-joint complex of the lower lumbar spine.

2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Thorsten Jentzsch ◽  
James Geiger ◽  
Samy Bouaicha ◽  
Ksenija Slankamenac ◽  
Thi Dan Linh Nguyen-Kim ◽  
...  

2020 ◽  
Vol 43 (12) ◽  
pp. 803-810 ◽  
Author(s):  
Masud Rana ◽  
Sandipan Roy ◽  
Palash Biswas ◽  
Shishir Kumar Biswas ◽  
Jayanta Kumar Biswas

The aim of this study is to design a novel expanding flexible rod device, for pedicle screw fixation to provide dynamic stability, based on strength and flexibility. Three-dimensional finite-element models of lumbar spine (L1-S) with flexible rod device on L3-L4-L5 levels are developed. The implant material is taken to be Ti-6Al-4V. The models are simulated under different boundary conditions, and the results are compared with intact model. In natural model, total range of motion under 10 Nm moment were found 66.7°, 24.3° and 13.59°, respectively during flexion–extension, lateral bending and axial rotation. The von Mises stress at intact bone was 4 ± 2 MPa and at bone, adjacent to the screw in the implanted bone, was 6 ± 3 MPa. The von Mises stress of disc of intact bone varied from 0.36 to 2.13 MPa while that of the disc between the fixed vertebra of the fixation model reduced by approximately 10% for flexion and 25% for extension compared to intact model. The von Mises stresses of pedicle screw were 120, 135, 110 and 90 MPa during flexion, extension, lateral bending, and axial rotation, respectively. All the stress values were within the safe limit of the material. Using the flexible rod device, flexibility was significantly increased in flexion/extension but not in axial rotation and lateral bending. The results suggest that dynamic stabilization system with respect to fusion is more effective for homogenizing the range of motion of the spine.


2017 ◽  
Vol 30 (3) ◽  
pp. 129-135 ◽  
Author(s):  
Thorsten Jentzsch ◽  
James Geiger ◽  
Matthias A. König ◽  
Clément M.L. Werner

Author(s):  
Moustafa Mesbah ◽  
Abdelwahed Barkaoui

Hybrid stabilization is widely performed for the surgical treatment of degenerative disk diseases. Pedicle-based hybrid stabilization intends to reduce fusion-associated drawbacks of adjacent segment degeneration, construct failure, and pseudoarthrosis. Recently, many types of pedicle-based hybrid stabilization systems have been developed and optimized, using polymeric devices as an adjunct for lumbar fusion procedures. Therefore, the purpose of this study was to evaluate the effect of new pedicle-based hybrid stabilization on bending stiffness and center of rotation at operated and adjacent levels in comparison with established semirigid and rigid devices in lumbar fusion procedures. A validated three-dimensional finite element model of the L3–S1 segments was modified to simulate postoperative changes during combined loading (moment of 7.5 N m + follower load of 400 N). Two models instrumented with pedicle-based hybrid stabilization (Dynesys Transition Optima, NFlex), semirigid system (polyetheretherketone), and rigid fixation system (titanium rod (Ti) were compared with those of the healthy and degenerated models. Contact force on the facet joint during extension increased in fusion (40 N) with an increase of bending stiffness in Dynesys and NFlex. The center of rotation shifted in posterior and cranial directions of the fused level. The centers of rotation in the lower lumbar spine is segment dependent and altered with the adopted construct. The bending stiffness was varied from 1.47 N m/° in lateral bending for the healthy model to 5.75 N m/° for the NFlex stabilization, which had the closest center of rotation, compared to the healthy center of rotation. Locations of center of rotation, stress, and strain distribution varied according to construct design and materials used. These data could help understand the biomechanical effects of current pedicle-based hybrid stabilization on the behavior of the lower lumbar spine.


Spine ◽  
2016 ◽  
Vol 41 (19) ◽  
pp. E1138-E1145 ◽  
Author(s):  
Douglas S. Weinberg ◽  
Katherine K. Xie ◽  
Raymond W. Liu ◽  
Jeremy J. Gebhart ◽  
Zachary L. Gordon

2021 ◽  
Author(s):  
Xin-ru Li ◽  
Zi-tong Li ◽  
Lu-ming Nong

Abstract Purpose: To investigate the lumbar biomechanical effects of unilateral partial facetectomy (UPF) of different facet joint (FJ) portions under percutaneous endoscopy. Methods: A 3D finite element (FE) model of the lumbar spine and 40 fresh calf spine models were used to simulate UPF under a physiological load performed through 3 commonly used needle insertion points (IPs) : (1) The apex of the superior FJ (as the first IP), (2) The midpoint of the ventral side of the superior FJ (as the second IP), (3) The lowest point of the ventral side of the superior FJ (as the third IP). The range of motion (ROM) and the L4/5 intradiscal maximum pressure (IMP) were measured and analyzed under a physiological load in all models during flexion, extension, left-right lateral flexion, and left-right axial rotation. Results: When UPF was performed through the first and the third IPs, the ROM of the lumbar spine and the L4/5 IMP in the FE model were significantly increased compared with those in the intact FE model. When UPF was performed through the second IP, the ROM of the lumbar spine and the L4/5 IMP were not significantly different compared with those in the intact FE model. When UPF was performed through the second IP, the ROM of the lumbar spine and the L4/5 IMP in the calf spine models were not statistically different from the intact calf spine model. Conclusion: UPF through the second IP resulted in a minimal impact on the biomechanics of the lumbar spine. Thus, it might be considered as the most appropriate IP for UPF.


Sign in / Sign up

Export Citation Format

Share Document