Effects of Prior Austenite and Ferrite Grain Size on Fracture Properties of a Plain Carbon Steel.

Author(s):  
H. Couque ◽  
J. Duffy ◽  
R. J. Asaro
2021 ◽  
Author(s):  
Christian Kerschbaummayr ◽  
Martin Ryzy ◽  
Bernhard Reitinger ◽  
Mike Hettich ◽  
Jan Džugan ◽  
...  

Abstract The macroscopic mechanical properties like yield-strength, ductility or hardness play an important role during the steel production and the design of new steel grades. The austenite grain size is an important parameter, which influences the final microstructure and the properties of a material. When developing grain growth evolution models, typically many samples have to be treated thermally and micrographs have to be prepared ex-situ. To reduce the time expenditure of this procedure we carried out in-situ laser ultrasound measurements of austenitic grain growth in plain carbon steel (AISI 1045). A thermomechanical simulator of the type Linseis L78/RITA has been upgraded with a laser ultrasound measurement system, which enables the continuous and contactless determination of the austenite mean grain size during a thermal cycle. In this work we will show the calibration workflow and grain size results by a new attenuation model for plain carbon steel. In-situ laser ultrasound measurement data is compared with several micrographs defined at supporting points along a specified temperature program to corroborate the findings.


2013 ◽  
Vol 762 ◽  
pp. 171-175
Author(s):  
Jin Guo ◽  
Shui Ping Hu ◽  
Zhen Li Mi ◽  
Dong Bin Zhang

The effect of different cooling paths on the microstructure and properties of a plain carbon steel was carefully investigated by thermal simulation, hot rolling, tensile tests and quantitative metallography. Experimental results indicate that the more rapid the cooling rate is, the smaller the average ferritic grain size is and the higher the mechanical properties are. Both ultra fast cooling method and ultra fast cooling+accelerated controlled cooling method could refine grain size and improve mechanical properties. Without any alloy addition, using the ultra fast cooling immediately after hot rolling process, the yield strength of the plain carbon steel could reach 360 MPa and the elongation is 32%.


2005 ◽  
Vol 475-479 ◽  
pp. 165-168 ◽  
Author(s):  
Ping Yang ◽  
Wang Yue Yang ◽  
Zu Qing Sun

Texture evolutions are determined by XRD and EBSD techniques during ferrite refinement through deformation-enhanced ferrite transformation (DEFT) and dynamic recrystallization (DREX). Evidences of transformation texture, deformation texture and recrystallization texture during DEFT are provided and compared with the texture during DREX. The influence of pass-interval during DEFT on texture is illustrated. Results are discussed in terms of the influences of ferrite grain size and deforming temperature.


2016 ◽  
Vol 879 ◽  
pp. 2528-2531
Author(s):  
Akira Yanagida ◽  
Ryo Aoki ◽  
Masataka Kobayashi

A Nb alloyed low carbon steel was processed by hot equal channel angular extrusion (ECAE) and following transformation. The workpieces were heated up to the 960°C in the furnace for 10 min within the container block. Before extrusion, the die was preheated to 400oC. The workpiece was cooled in the die after ECAE process. 1 pass and 2 pass via route C were conducted at a speed of 32mm/s, the inter-pass time is about 2 sec. The sample of average ferrite grain size of about 2μm, a tensile strength of 800MPa, a total elongation about 20% is produced after 2 pass ECAE processed and subsequent cooling.


1996 ◽  
Vol 36 (10) ◽  
pp. 1279-1285 ◽  
Author(s):  
A. Schmickl ◽  
D. Yu ◽  
C. Killmore ◽  
D. Langley ◽  
T. Chandra

Sign in / Sign up

Export Citation Format

Share Document