Investigations of Rough Surface Effects on Friction Factors in Turbulent Pipe Flow

1988 ◽  
Author(s):  
Robert P. Taylor ◽  
Hugh W. Coleman ◽  
W. F. Scaggs
1985 ◽  
Vol 107 (2) ◽  
pp. 280-283 ◽  
Author(s):  
D. J. Zigrang ◽  
N. D. Sylvester

A review of the explicit friction factor equations developed to replace the Colebrook equation is presented. Explicit friction factor equations are developed which yield a very high degree of precision compared to the Colebrook equation. A new explicit equation, which offers a reasonable compromise between complexity and accuracy, is presented and recommended for the calculation of all turbulent pipe flow friction factors for all roughness ratios and Reynold’s numbers.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Jian-Zhong Lin ◽  
Yi Xia ◽  
Xiao-Ke Ku

Numerical simulations of Al2O3/water nanofluid in turbulent pipe flow are performed with considering the particle convection, diffusion, coagulation, and breakage. The distributions of particle volume concentration, the friction factor, and heat transfer characteristics are obtained. The results show that the initial uniform distributions of particle volume concentration become nonuniform, and increase from the pipe wall to the center. The nonuniformity becomes significant along the flow direction from the entrance and attains a steady state gradually. Friction factors increase with the increase of particle volume concentrations and particle diameter, and with the decrease of Reynolds number. The friction factors increase remarkably at lower volume concentration, while slightly at higher volume concentration. The presence of nanoparticles provides higher heat transfer than pure water. The Nusselt number of nanofluids increases with increasing Reynolds number, particle volume concentration, and particle diameter. The rate increase in Nusselt number at lower particle volume concentration is more than that at higher concentration. For a fixed particle volume concentration, the friction factor is smaller while the Nusselt number is larger for the case with uniform distribution of particle volume concentration than that with nonuniform distribution. In order to effectively enhance the heat transfer using nanofluid and simultaneously save energy, it is necessary to make the particle distribution more uniform. Finally, the expressions of friction factor and Nusselt number as a function of particle volume concentration, particle diameter and Reynolds number are derived based on the numerical data.


2017 ◽  
Author(s):  
Dejan Brkić

Two new correlations of single-phase friction factor for turbulent pipe flow are shown in this paper. These two formulas are actually explicit approximations of iterative Colebrook's relation for calculation of flow friction factor. Calculated friction factors are valid for whole turbulent flow including hydraulically smooth and rough pipes with special attention on transient zone of turbulence between them. Hydraulically smooth regime of turbulence does not occur only in total absence of roughness of inner pipe surface, but also, four new relations for this theoretical regime are presented. Some recent formulas for turbulent flow friction calculation are also commented.


1989 ◽  
Vol 21 (6-7) ◽  
pp. 435-442 ◽  
Author(s):  
B. Döll

Silica suspensions (pH = 6.8) and three different cationic polymers were used to study the kinetics of charge neutralization by polyelectrolyte adsorption. The experiments were performed in a continuous flow pipe reactor under steady state turbulent flow conditions. The charge neutralization was monitored by electrophoretic mobility (EPM) measurements of the suspended particles as a function of time after polyelectrolyte audition. The results show the dependency of the destabilization reaction rate on flow and polymer characteristics.


Sign in / Sign up

Export Citation Format

Share Document