A Review of Explicit Friction Factor Equations

1985 ◽  
Vol 107 (2) ◽  
pp. 280-283 ◽  
Author(s):  
D. J. Zigrang ◽  
N. D. Sylvester

A review of the explicit friction factor equations developed to replace the Colebrook equation is presented. Explicit friction factor equations are developed which yield a very high degree of precision compared to the Colebrook equation. A new explicit equation, which offers a reasonable compromise between complexity and accuracy, is presented and recommended for the calculation of all turbulent pipe flow friction factors for all roughness ratios and Reynold’s numbers.

2017 ◽  
Author(s):  
Dejan Brkić

Two new correlations of single-phase friction factor for turbulent pipe flow are shown in this paper. These two formulas are actually explicit approximations of iterative Colebrook's relation for calculation of flow friction factor. Calculated friction factors are valid for whole turbulent flow including hydraulically smooth and rough pipes with special attention on transient zone of turbulence between them. Hydraulically smooth regime of turbulence does not occur only in total absence of roughness of inner pipe surface, but also, four new relations for this theoretical regime are presented. Some recent formulas for turbulent flow friction calculation are also commented.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Jian-Zhong Lin ◽  
Yi Xia ◽  
Xiao-Ke Ku

Numerical simulations of Al2O3/water nanofluid in turbulent pipe flow are performed with considering the particle convection, diffusion, coagulation, and breakage. The distributions of particle volume concentration, the friction factor, and heat transfer characteristics are obtained. The results show that the initial uniform distributions of particle volume concentration become nonuniform, and increase from the pipe wall to the center. The nonuniformity becomes significant along the flow direction from the entrance and attains a steady state gradually. Friction factors increase with the increase of particle volume concentrations and particle diameter, and with the decrease of Reynolds number. The friction factors increase remarkably at lower volume concentration, while slightly at higher volume concentration. The presence of nanoparticles provides higher heat transfer than pure water. The Nusselt number of nanofluids increases with increasing Reynolds number, particle volume concentration, and particle diameter. The rate increase in Nusselt number at lower particle volume concentration is more than that at higher concentration. For a fixed particle volume concentration, the friction factor is smaller while the Nusselt number is larger for the case with uniform distribution of particle volume concentration than that with nonuniform distribution. In order to effectively enhance the heat transfer using nanofluid and simultaneously save energy, it is necessary to make the particle distribution more uniform. Finally, the expressions of friction factor and Nusselt number as a function of particle volume concentration, particle diameter and Reynolds number are derived based on the numerical data.


1988 ◽  
Vol 110 (4) ◽  
pp. 385-391 ◽  
Author(s):  
W. F. Scaggs ◽  
R. P. Taylor ◽  
H. W. Coleman

The results of an experimental investigation of the effects of surface roughness on turbulent pipe flow friction factors are presented and compared with predictions from a previously published discrete element roughness model. Friction factor data were acquired over a pipe Reynolds number range from 10,000 to 600,000 for nine different uniformly rough surfaces. These surfaces covered a range of roughness element sizes, spacings and shapes. Predictions from the discrete element roughness model were in very good agreement with the data.


1978 ◽  
Vol 100 (2) ◽  
pp. 224-229 ◽  
Author(s):  
O. T. Hanna ◽  
O. C. Sandall

Analytical approximations are developed to predict the effect of a temperature-dependent viscosity on convective heat transfer through liquids in fully developed turbulent pipe flow. The analysis expresses the heat transfer coefficient ratio for variable to constant viscosity in terms of the friction factor ratio for variable to constant viscosity, Tw, Tb, and a fluid viscosity-temperature parameter β. The results are independent of any particular eddy diffusivity distribution. The formulas developed here represent an analytical approximation to the model developed by Goldmann. These approximations are in good agreement with numerical solutions of the model nonlinear differential equation. To compare the results of these calculations with experimental data, a knowledge of the effect of variable viscosity on the friction factor is required. When available correlations for the friction factor are used, the results given here are seen to agree well with experimental heat transfer coefficients over a considerable range of μw/μb.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 793
Author(s):  
Majid Niazkar

Estimating the Darcy–Weisbach friction factor is crucial to various engineering applications. Although the literature has accepted the Colebrook–White formula as a standard approach for this prediction, its implicit structure brings about an active field of research seeking for alternatives more suitable in practice. This study mainly attempts to increase the precision of two explicit equations proposed by Brkić and Praks. The results obviously demonstrate that the modified relations outperformed the original ones from nine out of 10 accuracy evaluation criteria. Finally, one of the improved equations estimates closer friction factors to those obtained by the Colebrook–White formula among 18 one-step explicit equations available in the literature based on three of the considered criteria.


Author(s):  
Luiz Eduardo Muzzo ◽  
Gláucio Kenji Matoba ◽  
Luís Frölén Ribeiro

Sign in / Sign up

Export Citation Format

Share Document