Mathematical Analysis of Strong Fluid Mechanical Effects at High Mach Number in Reactive and Nonreactive Flow

1992 ◽  
Author(s):  
Andrew J. Majda
1989 ◽  
Author(s):  
GLOYD SIMMONS ◽  
GORDON NELSON ◽  
ROBERT HIERS ◽  
ARTHURB. WESTERN

1984 ◽  
Vol 37 (1-2) ◽  
Author(s):  
C.S. Wu ◽  
D. Winske ◽  
Y.M. Zhou ◽  
S.T. Tsai ◽  
P. Rodriguez ◽  
...  

2013 ◽  
Vol 9 (1) ◽  
pp. 187-191 ◽  
Author(s):  
T. Morita ◽  
Y. Sakawa ◽  
Y. Kuramitsu ◽  
S. Dono ◽  
H. Tanji ◽  
...  

Author(s):  
Margarita Baeva ◽  
Tao Zhu ◽  
Thorben Kewitz ◽  
Holger Testrich ◽  
Rüdiger Foest

AbstractA two-dimensional and stationary magnetohydrodynamic model of a plasma spray torch operated with argon is developed to predict the plasma properties in a steady operating mode. The model couples a submodel of a refractory cathode and its non-equilibrium boundary layer to a submodel of the plasma in local thermodynamic equilibrium in a self-consistent manner. The Navier–Stokes equations for a laminar and compressible flow are solved in terms of low and high Mach number numerical approaches. The results show that the Mach number can reach values close to one. Simulations are performed for electric currents of 600 A and 800 A, and gas flow rates of 40, 60, and 80 NLPM. The plasma parameters obtained by the two approaches differ, and the differences become more pronounced for higher currents and gas flow rates. The arc voltage, the electric power, and the thermal efficiency from both the low and high Mach number models of the plasma agree well with experimental findings for a current of 600 A and a flow rate of 40 NLPM. For higher currents and gas flow rates, the results of the low and high Mach number models gradually differ and underline the greater appropriateness of the high Mach number model.


Sign in / Sign up

Export Citation Format

Share Document