Characterizations of Linear Independence and Stability of the Shifts of a Univariate Refinable Function in Terms of Its Refinement Mask

Author(s):  
Amos Ron
1997 ◽  
Vol 49 (5) ◽  
pp. 944-962 ◽  
Author(s):  
R. Q. Jia ◽  
S. D. Riemenschneider ◽  
D. X. Zhou

AbstractWe consider the shift-invariant space, 𝕊(Φ), generated by a set Φ = {Φ1,..., Φr} of compactly supported distributions on R when the vector of distributions ϕ:= {Φ1,..., Φr} T satisfies a system of refinement equations expressed in matrix form aswhere a is a finitely supported sequence of r x r matrices of complex numbers. Such multiple refinable functions occur naturally in the study of multiple wavelets.The purpose of the present paper is to characterize the accuracy of Φ, the order of the polynomial space contained in 𝕊(Φ), strictly in terms of the refinement mask a. The accuracy determines the Lp-approximation order of 𝕊(Φ) when the functions in (Φ) belong to Lp(ℝ) (see Jia [10]). The characterization is achieved in terms of the eigenvalues and eigenvectors of the subdivision operator associated with the mask a. In particular, they extend and improve the results of Heil, Strang and Strela [7], and of Plonka [16]. In addition, a counterexample is given to the statement of Strang and Strela [20] that the eigenvalues of the subdivision operator determine the accuracy. The results do not require the linear independence of the shifts of Φ.


Author(s):  
T. N. T. Goodman ◽  
R.-Q. Jia ◽  
D.-X. Zhou

This paper is devoted to a study of local linear independence of refinable vectors of functions. A vector of functions is said to be refinable if it satisfies the vector refinement equation where a is a finitely supported sequence of r × r matrices called the refinement mask. A complete characterization for the local linear independence of the shifts of ϕ1,…,ϕr is given strictly in terms of the mask. Several examples are provided to illustrate the general theory. This investigation is important for construction of wavelets on bounded domains and nonlinear approximation by wavelets.


Author(s):  
Olivia Caramello

This chapter discusses several classical as well as new examples of theories of presheaf type from the perspective of the theory developed in the previous chapters. The known examples of theories of presheaf type that are revisited in the course of the chapter include the theory of intervals (classified by the topos of simplicial sets), the theory of linear orders, the theory of Diers fields, the theory of abstract circles (classified by the topos of cyclic sets) and the geometric theory of finite sets. The new examples include the theory of algebraic (or separable) extensions of a given field, the theory of locally finite groups, the theory of vector spaces with linear independence predicates and the theory of lattice-ordered abelian groups with strong unit.


Author(s):  
Florian Mannel

AbstractWe consider the Broyden-like method for a nonlinear mapping $F:\mathbb {R}^{n}\rightarrow \mathbb {R}^{n}$ F : ℝ n → ℝ n that has some affine component functions, using an initial matrix B0 that agrees with the Jacobian of F in the rows that correspond to affine components of F. We show that in this setting, the iterates belong to an affine subspace and can be viewed as outcome of the Broyden-like method applied to a lower-dimensional mapping $G:\mathbb {R}^{d}\rightarrow \mathbb {R}^{d}$ G : ℝ d → ℝ d , where d is the dimension of the affine subspace. We use this subspace property to make some small contributions to the decades-old question of whether the Broyden-like matrices converge: First, we observe that the only available result concerning this question cannot be applied if the iterates belong to a subspace because the required uniform linear independence does not hold. By generalizing the notion of uniform linear independence to subspaces, we can extend the available result to this setting. Second, we infer from the extended result that if at most one component of F is nonlinear while the others are affine and the associated n − 1 rows of the Jacobian of F agree with those of B0, then the Broyden-like matrices converge if the iterates converge; this holds whether the Jacobian at the root is invertible or not. In particular, this is the first time that convergence of the Broyden-like matrices is proven for n > 1, albeit for a special case only. Third, under the additional assumption that the Broyden-like method turns into Broyden’s method after a finite number of iterations, we prove that the convergence order of iterates and matrix updates is bounded from below by $\frac {\sqrt {5}+1}{2}$ 5 + 1 2 if the Jacobian at the root is invertible. If the nonlinear component of F is actually affine, we show finite convergence. We provide high-precision numerical experiments to confirm the results.


Author(s):  
Barry J Griffiths ◽  
Samantha Shionis

Abstract In this study, we look at student perceptions of a first course in linear algebra, focusing on two specific aspects. The first is the statement by Carlson that a fog rolls in once abstract notions such as subspaces, span and linear independence are introduced, while the second investigates statements made by several authors regarding the negative emotions that students can experience during the course. An attempt is made to mitigate this through mediation to include a significant number of applications, while continually dwelling on the key concepts of the subject throughout the semester. The results show that students agree with Carlson’s statement, with the concept of a subspace causing particular difficulty. However, the research does not reveal the negative emotions alluded to by other researchers. The students note the importance of grasping the key concepts and are strongly in favour of using practical applications to demonstrate the utility of the theory.


2015 ◽  
Vol 38 (3) ◽  
pp. 513-528 ◽  
Author(s):  
S. Fischler ◽  
M. Hussain ◽  
S. Kristensen ◽  
J. Levesley

2014 ◽  
Vol 142 (10) ◽  
pp. 3411-3419 ◽  
Author(s):  
Florian Luca ◽  
Yohei Tachiya

1993 ◽  
Vol 36 (1) ◽  
pp. 69-85 ◽  
Author(s):  
Rong-Qing Jia ◽  
Charles A. Micchelli

We investigate linear independence of integer translates of a finite number of compactly supported functions in two cases. In the first case there are no restrictions on the coefficients that may occur in dependence relations. In the second case the coefficient sequences are restricted to be in some lp space (1 ≦ p ≦ ∞) and we are interested in bounding their lp-norms in terms of the Lp-norm of the linear combination of integer translates of the basis functions which uses these coefficients. In both cases we give necessary and sufficient conditions for linear independence of integer translates of the basis functions. Our characterization is based on a study of certain systems of linear partial difference and differential equations, which are of independent interest.


Sign in / Sign up

Export Citation Format

Share Document