Transverse Oscillations of a Circular Cylinder in Uniform Flow, Part 1. Revised

Author(s):  
Turgut Sarpkaya
2010 ◽  
Vol 5 (3) ◽  
pp. 603-616 ◽  
Author(s):  
Tuananh NGUYEN ◽  
Mizuyasu KOIDE ◽  
Tsutomu TAKAHASHI ◽  
Masataka SHIRAKASHI

2000 ◽  
Vol 122 (4) ◽  
pp. 694-702 ◽  
Author(s):  
Mustafa Tutar ◽  
Arne E. Holdo̸

Results of a numerical evaluation of transitional flow around a circular cylinder forced to oscillate in a direction normal to a uniform flow are presented. The cylinder is considered to be a representative of a single riser exposed to a steady current. Numerical simulations were carried out using the LES method in 2-D and 3-D with a near-wall approach that was developed without using a “law of the wall” for a finite element code (FEM). The 3-D simulations were compared with the 2-D results and experimental data in order to assess the relative performance of the 3-D LES simulations. The results show that 3-D LES gives more realistic flow field predictions and can further remove overconservatism in the prediction of hydrodynamic force coefficients. [S0098-2202(00)01103-2]


1967 ◽  
Vol 30 (2) ◽  
pp. 337-355 ◽  
Author(s):  
Peter D. Richardson

An analysis is described for convection from a circular cylinder subjected to transverse oscillations relative to the fluid in which it is immersed. The analysis is based upon use of the acoustic streaming flow field. It is assumed that the frequency involved is sufficiently small that the acoustic wavelength in the fluid is much larger than the cylinder diameter, and that there is no externally imposed mean flow across or along the cylinder. Solutions are presented which are appropriate for a wide range of Prandtl number, and the cases of small and of large streaming Reynolds number are distinguished. The analysis compares favourably with experiments when the influence of natural convection is small.


1997 ◽  
Vol 119 (2) ◽  
pp. 453-454 ◽  
Author(s):  
S. Aiba ◽  
H. Watanabe

This is a report on an investigation of the flow characteristics of a bluff body cut from a circular cylinder. The volume removed from the cylinder is equal to d/2(1 − cos θs), where d and θs are the diameter and the angular position (in the case of a circular cylinder, θs, = 0 deg), respectively. θs, ranged from 0 deg to 72.5 deg and Re (based on d and the upstream uniform flow velocity U∞) from 2.0 × 104 to 3.5 × 104. It is found that a singular flow around the cylinder occurs at around θs = 53 deg when Re > 2.5 × 104, and the base pressure coefficient (−Cpb,) and the drag coefficient CD take small values compared with those for otherθs.


Sign in / Sign up

Export Citation Format

Share Document