Description of Gun Muzzle Blast by Modified Ideal Scaling Models

Author(s):  
Kevin S. Fansler
Keyword(s):  
1998 ◽  
Vol 5 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Kevin S. Fansler

Gun blast data from a large variety of weapons are scaled and presented for both the instantaneous energy release and the constant energy deposition rate models. For both ideal explosion models, similar amounts of data scatter occur for the peak overpressure but the instantaneous energy release model correlated the impulse data significantly better, particularly for the region in front of the gun. Two parameters that characterize gun blast are used in conjunction with the ideal scaling models to improve the data correlation. The gun-emptying parameter works particularly well with the instantaneous energy release model to improve data correlation. In particular, the impulse, especially in the forward direction of the gun, is correlated significantly better using the instantaneous energy release model coupled with the use of the gun-emptying parameter. The use of the Mach disc location parameter improves the correlation only marginally. A predictive model is obtained from the modified instantaneous energy release correlation.


1992 ◽  
Author(s):  
John Kietzman ◽  
Kevin S. Fansler ◽  
William G. Thompson
Keyword(s):  

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 469
Author(s):  
Ying Zhang ◽  
Hengyu Zhang ◽  
Yunfeng Zhao ◽  
Xiaojing Zhou ◽  
Jie Du ◽  
...  

In animal breeding, body components and metabolic traits always fall behind body weights in genetic improvement, which leads to the decline in standards and qualities of animal products. Phenotypically, the relative growth of multiple body components and metabolic traits relative to body weights are characterized by using joint allometric scaling models, and then random regression models (RRMs) are constructed to map quantitative trait loci (QTLs) for relative grwoth allometries of body compositions and metabolic traits in chicken. Referred to as real joint allometric scaling models, statistical utility of the so-called LASSO-RRM mapping method is given a demonstration by computer simulation analysis. Using the F2 population by crossing broiler × Fayoumi, we formulated optimal joint allometric scaling models of fat, shank weight (shank-w) and liver as well as thyroxine (T4) and glucose (GLC) to body weights. For body compositions, a total of 9 QTLs, including 4 additive and 5 dominant QTLs, were detected to control the allometric scalings of fat, shank-w, and liver to body weights; while a total of 10 QTLs of which 6 were dominant, were mapped to govern the allometries of T4 and GLC to body weights. We characterized relative growths of body compositions and metabolic traits to body weights in broilers with joint allometric scaling models and detected QTLs for the allometry scalings of the relative growths by using RRMs. The identified QTLs, including their highly linked genetic markers, could be used to order relative growths of the body components or metabolic traits to body weights in marker-assisted breeding programs for improving the standard and quality of broiler meat products.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Suchitra Rajput ◽  
Sujeet Chaudhary

We report on the analyses of fluctuation induced excess conductivity in the - behavior in the in situ prepared MgB2 tapes. The scaling functions for critical fluctuations are employed to investigate the excess conductivity of these tapes around transition. Two scaling models for excess conductivity in the absence of magnetic field, namely, first, Aslamazov and Larkin model, second, Lawrence and Doniach model, have been employed for the study. Fitting the experimental - data with these models indicates the three-dimensional nature of conduction of the carriers as opposed to the 2D character exhibited by the HTSCs. The estimated amplitude of coherence length from the fitted model is ~21 Å.


2016 ◽  
Vol 774 ◽  
pp. 012017
Author(s):  
V S Vorob'yev ◽  
V A Rykov ◽  
E E Ustyuzhanin ◽  
V V Shishakov ◽  
P V Popov ◽  
...  

2016 ◽  
Vol 20 (7) ◽  
pp. 2669-2678 ◽  
Author(s):  
James Polsinelli ◽  
M. Levent Kavvas

Abstract. In the past 2 decades a new modern scaling technique has emerged from the highly developed theory on the Lie group of transformations. This new method has been applied by engineers to several problems in hydrology and hydraulics, including but not limited to overland flow, groundwater dynamics, sediment transport, and open channel hydraulics. This study attempts to clarify the relationship this new technology has with the classical scaling method based on dimensional analysis, non-dimensionalization, and the Vaschy–Buckingham-Π theorem. Key points of the Lie group theory, and the application of the Lie scaling transformation, are outlined and a comparison is made with two classical scaling models through two examples: unconfined groundwater flow and contaminant transport. The Lie scaling method produces an invariant scaling transformation of the prototype variables, which ensures the dynamics between the model and prototype systems will be preserved. Lie scaling can also be used to determine the conditions under which a complete model is dynamically, kinematically, and geometrically similar to the prototype phenomenon. Similarities between the Lie and classical scaling methods are explained, and the relative strengths and weaknesses of the techniques are discussed.


1979 ◽  
Vol 57 (7) ◽  
pp. 921-925 ◽  
Author(s):  
A. K. Chakrabarti ◽  
A. K. Das ◽  
A. K. De

Using the recent ISR data of proton–proton interactions on the inclusive production of pions and nucleons, realistic values of the mean pion inelasticity Kπ and the mean nucleon inelasticity KT have been estimated. These values have been used for the derivation of the sea level differential muon spectrum from the primary nucleon spectrum and vice versa using the CKP model as an extension of the work presented in an earlier article. It is found that none of the measured primary nucleon spectra of Ryan, Ormes, and Balasubrahmanyan and Grigorov, Rapoport, and Shestoperov fit any of the precisely measured muon spectra of Ayre, Baxendale, Hume, Nandi, Thompson, and Whalley and Allkofer, Carstensen, and Dau in spectral shape or the absolute value. On the other hand good agreement between the derived muon spectra and the spectra of Allkofer et al. and Ayre et al. is found if the primary nucleon spectra of the forms, N(Ep) = (1.38 ± 0.08)Ep−2.59 and N(Ep) = (1.00 ± 0.10)Ep−2.55, respectively, are assumed. The first form is comparable with that obtained by Brooke, Hayman, Kamiya, and Wolfendale following more approximate but similar procedure. It is also not unjustified when compared with the measured primary all nuclei spectrum of Grigorov et al. in the light of suggestions made by Ellsworth, Ito, Macfall, Siohan, Streitmatter, Tonwar, Vishwanath, Yodh, and Balasubrahmanyan. By comparing the pion production spectra derived from the same primary nucleon spectrum but using the CKP and the scaling models, it is concluded that the results are sensitive to the model assumed for the collisions.


Author(s):  
David A. Armstrong ◽  
Ryan Bakker ◽  
Royce Carroll ◽  
Christopher Hare ◽  
Keith T. Poole ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document