The Effects of Inlet Ducting Geometries on the Performance Characteristics of Waterjet Engines. Phase 1: Measurement of Pressure Distributions

1996 ◽  
Author(s):  
Shelly M. Loustaunau
Author(s):  
A. Doukelis ◽  
K. Mathioudakis ◽  
K. Papailiou

The performance of a high speed annular compressor cascade for different clearance gap sizes, with stationary or rotating hub wall is investigated. Five hole probe measurements, conducted at the inlet and outlet of the cascade, are used to derive blade performance characteristics, in the form of loss and turning distributions. Characteristics are presented in the form of circumferentially mass averaged profiles, while distributions on the exit plane provide information useful to interpret the performance of the blading. Static pressure distributions on the surface of the blades as well as inside the tip clearance gap have also been measured. A set of four clearance gap sizes, in addition to zero clearance data for the stationary wall, gives the possibility to observe the dependence of performance characteristics on clearance size, and establish the influence of rotating the hub. Overall performance is related to features of the tip clearance flow. Increasing the clearance size is found to increase losses in the clearance region, while it affects the flow in the entire passage. Wall rotation is found to improve the performance of the cascade.


Author(s):  
I. N. Robertson ◽  
K. Paczkowski ◽  
H. R. Riggs ◽  
A. Mohamed

A series of experiments have been carried out at Oregon State University to quantify tsunami bore forces on structures. Phase 1 of the tests was carried out in the Tsunami Wave Basin (TWB), while Phase II of the tests were carried out in the Large Wave Flume (LWF) at approximately twice the scale of the Phase I tests. These latter tests included ‘offshore’ solitary waves, with heights up to 1.3 m, that traveled over a flat bottom, up a sloping beach and breaking onto a flat ‘fringing reef’. Standing water depths on the reef varied from 0.05 m to 0.3 m. Resulting bores on the reef measured up to approximately 0.8 m. After propagating along the reef, the bores struck a vertical wall. The resulting forces and pressures on the wall were measured. The test setup for the Phase II tests in the LWF is described and the experimental results are reported. The results include forces and pressure distributions. Results show that the bores propagated with a Froude number of approximately 2, and that the forces follow Froude scaling. Finally, a design formula for the maximum impact force is given. The formula is shown to be an improvement over existing formulas found in the literature. The lateral forces are shown to be quite significant compared to traditional lateral loads on vertical wall elements.


Author(s):  
Xiaobing Shi ◽  
Jinling Lu ◽  
Lianming Zhao

Although significant advances have been made in tandem-blade technology for axial and centrifugal compressors, little attention has been paid to its application in centrifugal pumps. In this study, we propose a new tandem-blade design method for improving inner flow characteristics and overall performance of a centrifugal pump. With the SST k − ω turbulence model, three-dimensional turbulent flow fields in the centrifugal pump with tandem blades are simulated and analyzed. The effects of tandem blades on the inner flow and performance characteristics of the centrifugal pump are investigated. The predicted velocity and pressure distributions and flow behavior of the tandem-blade impeller are compared with those of a conventional single row blade impeller. It is indicated that the centrifugal tandem-blade impeller exhibits a significant advantage in terms of the uniformity of the impeller discharge flow. The tandem blades improve the jet-wake structure and uniformity of velocity and pressure distributions at the impeller outlet, and thus reduce the pressure fluctuation and hydraulic loss. Moreover, the hump phenomenon is eliminated or alleviated under low flow rate conditions, and the tandem-blade impeller has better hydraulic performance within a wider operating range as well as high reliability. This study provides a basis for the further development of the centrifugal pump with tandem blades.


2001 ◽  
Vol 60 (4) ◽  
pp. 215-230 ◽  
Author(s):  
Jean-Léon Beauvois

After having been told they were free to accept or refuse, pupils aged 6–7 and 10–11 (tested individually) were led to agree to taste a soup that looked disgusting (phase 1: initial counter-motivational obligation). Before tasting the soup, they had to state what they thought about it. A week later, they were asked whether they wanted to try out some new needles that had supposedly been invented to make vaccinations less painful. Agreement or refusal to try was noted, along with the size of the needle chosen in case of agreement (phase 2: act generalization). The main findings included (1) a strong dissonance reduction effect in phase 1, especially for the younger children (rationalization), (2) a generalization effect in phase 2 (foot-in-the-door effect), and (3) a facilitatory effect on generalization of internal causal explanations about the initial agreement. The results are discussed in relation to the distinction between rationalization and internalization.


2004 ◽  
Author(s):  
Carl L. Henderson
Keyword(s):  
Phase 1 ◽  

Sign in / Sign up

Export Citation Format

Share Document