The Role of Microstructure on Various Stages of the Very High Cycle Fatigue Behavior of an a + Beta Titanium Alloy, Ti-6Al-2Sn-4Zr-6Mo (Preprint)

Author(s):  
C. J. Szczepanski ◽  
S. K. Jha ◽  
J. M. Larsen ◽  
J. W. Jones
Author(s):  
Nie Baohua ◽  
Zhao Zihua ◽  
Ouyang Yongzhong ◽  
Chen Dongchu ◽  
Chen Hong ◽  
...  

The effect of low cycle fatigue (LCF) pre-damage on the subsequent very high cycle fatigue (VHCF) behavior is investigated in TC21 titanium alloy. LCF pre-damage is applied under 1.8% strain amplitude up to various fractions of the expected life and subsequent VHCF properties are determined using ultrasonic fatigue tests. Results show that 5% of LCF pre-damage insignificantly affects the VHCF limit due to the absent of pre-crack, but decreases the subsequent fatigue crack initiation life estimated by Pairs’ law. Pre-cracks introduced by 10% and 20% of LCF pre-damage significantly reduce the subsequent VHCF limits. The crack initiation site shifts from subsurface-induced fracture for undamaged and 5% of LCF pre-damage specimens to surface pre-crack for 10% and 20% of LCF pre-damage specimens in very high cycle region. The fracture mechanism analysis indicate that LCF pre-crack will re-start to propagate under subsequently low stress amplitude when stress intensity factor of pre-crack is larger than its threshold. Furthermore, the predicted fatigue limits based on EI Haddad model for the LCF pre-damage specimens well agree with the experimental results.


Materials ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 1384 ◽  
Author(s):  
Baohua Nie ◽  
Zihua Zhao ◽  
Yongzhong Ouyang ◽  
Dongchu Chen ◽  
Hong Chen ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 401 ◽  
Author(s):  
Baohua Nie ◽  
Zihua Zhao ◽  
Dongchu Chen ◽  
Shu Liu ◽  
Minsha Lu ◽  
...  

2021 ◽  
Vol 811 ◽  
pp. 141049
Author(s):  
Fulin Liu ◽  
Yao Chen ◽  
Chao He ◽  
Lang Li ◽  
Chong Wang ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1023 ◽  
Author(s):  
Byung-Hoon Lee ◽  
Sung-Woo Park ◽  
Soong-Keun Hyun ◽  
In-Sik Cho ◽  
Kyung-Taek Kim

The effect of heat treatment condition on non-Cu AA7021 alloy was investigated with respect to mechanical properties and very high cycle fatigue behavior. With a focus on the influence of heat treatment, AA7021 alloy was solution heat-treated at 470 °C for 4 h and aged at 124 °C. Comparing the results of solution-treated and peak-aged AA7021 alloy shows a significant increase in Vickers hardness and tensile strength. The hardness of AA7021 alloy was increased by 65% after aging treatment, and both tensile strength and yield strength were increased by 50~80 MPa in each case. In particular, this paper investigated the very high cycle fatigue behavior of AA7021 alloy with the ultrasonic fatigue testing method using a resonance frequency of 20 kHz. The fatigue results showed that the stress amplitude of peak-aged AA7021 alloy was about 50 MPa higher than the solution-treated alloy at the same fatigue cycles. Furthermore, it was confirmed that the size of the crack initiation site was larger after peak aging than after solution treatment.


2015 ◽  
Vol 825-826 ◽  
pp. 150-157 ◽  
Author(s):  
Alexandra Müller ◽  
Anja Weidner ◽  
Horst Biermann

During technical operation, high performance materials are partially exposed to high frequency cyclic loading conditions. Furthermore, the small strains in the very high cycle fatigue (VHCF)-regime lead to accumulative damage which causes crack initiation related to an appropriate local deformation leading to final fatal fracture. At the same time, quite high requirements with regard to high number of cycles without any damage are demanded for many applications. Fields of application of these light-weight, but expensive materials, are e.g. in the automobile industry (e.g. engine blocks, cylinder heads, brakes).The fatigue behavior of Al-matrix composites (Al-MMCs) reinforced by alumina particles (15 vol.% Al2O3) or short fibers (20 vol.% Saffil), respectively, was already intensively studied in the LCF and HCF range. The present study is focusing on investigations in the very high cycle fatigue regime at stress amplitudes up to 140 MPa to reach fatigue life of about 1010 cycles. All experiments were carried out using an ultrasonic fatigue testing device under symmetric loading conditions (R=-1). Fatigue tests were accompanied by in situ thermography measurements to record the temperature of the whole specimen and to find “hot spots” indicating changes in microstructure and therefore the initiation or growth of cracks. Moreover, the resonant frequency as well as the damage parameter were evaluated to determine the beginning of damage. For a better understanding of the damage mechanism (matrix decohesion, matrix failure or failure of reinforcement) all fractured surfaces were investigated by scanning electron microscopy. The combination of these methods contributes to a better understanding of the underlying mechanism of damage in aluminum-matrix-composites.


2016 ◽  
Vol 258 ◽  
pp. 255-258
Author(s):  
Ulrich Krupp ◽  
Marcus Söker ◽  
Tina Waurischk ◽  
Alexander Giertler ◽  
Benjamin Dönges ◽  
...  

As being used for structural applications, where a high corrosion resistance is required, the fatigue behavior of duplex stainless steels (DSS) is governed by the partition of cyclic plasticity to the two phases, ferrite and austenite, respectively. Under very high cycle fatigue (VHCF) loading conditions, the heterogeneous distribution of crystallographic misorientations between neighboring grains and phases yields to a pronounced scatter in fatigue life, ranging from 1 million to 1 billion cycles for nearly the same stress amplitude. In addition, the relevant damage mechanisms depend strongly on the atmosphere. Stress corrosion cracking in NaCl-containing atmosphere causes a pronounced decrease in the VHCF life. By means of ultrasonic fatigue testing at 20kHz in combination with high resolution scanning electron microscopy, electron back-scattered diffraction (EBSD), focused ion beam milling (FIB) and synchrotron tomography, the microstructure heterogeneities were quantified and correlated with local fatigue damage. It has been shown that the fatigue process is rather complex, involving redistribution of residual stresses and three-dimensional barrier effects of the various interfaces. The application of a 2D/3D finite element model allows a qualitative prediction of the fatigue-damage process in DSS that is controlled by stochastic local microstructure arrangements.


Sign in / Sign up

Export Citation Format

Share Document