Toward Personalized Ovarian Cancer Therapy through the Cancer Genome Atlas

2011 ◽  
Author(s):  
Douglas Levine
2012 ◽  
Vol 125 ◽  
pp. S42
Author(s):  
G. Sfakianos ◽  
E. Iversen ◽  
W. Lowery ◽  
R. Whitaker ◽  
L. Akushevich ◽  
...  

2015 ◽  
Vol 138 (1) ◽  
pp. 159-164 ◽  
Author(s):  
Brandon-Luke L. Seagle ◽  
Chia-Ping Huang Yang ◽  
Kevin H. Eng ◽  
Monica Dandapani ◽  
Oluwatosin Odunsi-Akanji ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6301 ◽  
Author(s):  
Ping Wang ◽  
Zengli Zhang ◽  
Yujie Ma ◽  
Jun Lu ◽  
Hu Zhao ◽  
...  

Early detection and prediction of prognosis and treatment responses are all the keys in improving survival of ovarian cancer patients. This study profiled an ovarian cancer progression model to identify prognostic biomarkers for ovarian cancer patients. Mouse ovarian surface epithelial cells (MOSECs) can undergo spontaneous malignant transformation in vitro cell culture. These were used as a model of ovarian cancer progression for alterations in gene expression and signaling detected using the Illumina HiSeq2000 Next-Generation Sequencing platform and bioinformatical analyses. The differential expression of four selected genes was identified using the gene expression profiling interaction analysis (http://gepia.cancer-pku.cn/) and then associated with survival in ovarian cancer patients using the Cancer Genome Atlas dataset and the online Kaplan–Meier Plotter (http://www.kmplot.com) data. The data showed 263 aberrantly expressed genes, including 182 up-regulated and 81 down-regulated genes between the early and late stages of tumor progression in MOSECs. The bioinformatic data revealed four genes (i.e., guanosine 5′-monophosphate synthase (GMPS), progesterone receptor (PR), CD40, and p21 (cyclin-dependent kinase inhibitor 1A)) to play an important role in ovarian cancer progression. Furthermore, the Cancer Genome Atlas dataset validated the differential expression of these four genes, which were associated with prognosis in ovarian cancer patients. In conclusion, this study profiled differentially expressed genes using the ovarian cancer progression model and identified four (i.e., GMPS, PR, CD40, and p21) as prognostic markers for ovarian cancer patients. Future studies of prospective patients could further verify the clinical usefulness of this four-gene signature.


Radiology ◽  
2017 ◽  
Vol 285 (2) ◽  
pp. 482-492 ◽  
Author(s):  
Hebert Alberto Vargas ◽  
Erich P. Huang ◽  
Yulia Lakhman ◽  
Joseph E. Ippolito ◽  
Priya Bhosale ◽  
...  

2018 ◽  
Vol 45 (3) ◽  
pp. 1061-1071 ◽  
Author(s):  
Shengyun Cai ◽  
Pei Zhang ◽  
Suhe Dong ◽  
Li Li ◽  
Jianming Cai ◽  
...  

Background/Aims: Ovarian cancer (OC) is the fifth leading cause of cancer-related death in women, and it is difficult to diagnose at an early stage. The purpose of this study was to explore the prognostic biological markers of OC. Methods: Univariate Cox regression analysis was used to identify genes related to OC prognosis from the Cancer Genome Atlas(TCGA) database. Immunohistochemistry was used to analyse the level of SPINK13 in OC and normal tissues. Cell proliferation, apoptosis and invasion were performed using MTT assay, flow cytometric analysis and Transwell assay, respectively. Results: We identified the Kazal-type serine protease inhibitor-13 (SPINK13) gene related to OC prognosis from the Cancer Genome Atlas (TCGA) database by univariate Cox regression analysis. Overexpression of SPINK13 was associated with higher overall survival rate in OC patients. Immunohistochemistry showed that the level of SPINK13 protein was significantly lower in OC tissues than in normal tissues (P < 0.05).In vitro experiments showed that the overexpression of SPINK13 inhibited cellular proliferation and promoted apoptosis. Moreover, SPINK13 inhibited cell migration and epithelial to mesenchymal transition (EMT). SPINK13 was found to inhibit the expression of urokinase-type plasminogen activator (uPA), while recombinant uPA protein could reverse the inhibitory effect of SPINK13 on OC metastasis. Conclusion: These results indicate that SPINK13 functions as a tumour suppressor. The role of SPINK13 in cellular proliferation, apoptosis and migration is uPA dependent, and SPINK13 may be used as a potential biomarker for diagnosis and targeted therapy in OC.


Sign in / Sign up

Export Citation Format

Share Document