Generation of Internal Tides and Internal Solitary Waves on the Continental Shelf

2003 ◽  
Author(s):  
Roger H. Grimshaw
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
João A. Lorenzzetti ◽  
Fabian G. Dias

We present an analysis of internal solitary waves (ISWs) on the SE Brazilian continental shelf using a set of Envisat/ASAR satellite images. For the 17-month observation period, 467 ISW packets were detected. Most of observed solitons were associated to 4–6 ms-1 wind. The number of ISW packets shows a seasonal signal with a peak in summer, with higher concentration in the outer shelf in all seasons, followed by midshelf during the summer. Propagation direction of ISWs was predominantly onshore with packets separated by typical M2 internal tide wavelengths (~10–40 km). The highest values of the barotropic tidal forcing F are concentrated at the shelf break between 200 and 500 m isobaths. These characteristics suggest that ISWs are formed from nonlinear disintegration of internal tides generated at the shelf break that propagate shoreward as interfacial internal waves. No significant change in the number of ISWs from spring to neap tides was observed in spite of significant tidal current variation (60%). Even not being a region of strong tides, this study shows that ISWs are a frequent and widespread feature, possibly playing a significant dynamic role, affecting biological production, sediment dispersion, and transport.


2020 ◽  
Author(s):  
Zhenhua Xu

<p>The interaction between the energetic internal waves in the Indonesian Seas and the Indonesian Throughflow (ITF) is not well known. Here we conduct a series of high-resolution numerical simulations surrounding the Lombok Strait, Indonesia, which is an important exit channel for the ITF, to explore the influences of the ITF on the spatiotemporal variations of M2 internal tides and associated internal solitary waves from the Strait. The ITF enhances the north-south asymmetry of internal tide propagation from the Lombok Strait, thus resulting in the spatial variability of northward and southward internal solitary waves. Interannual variability of internal tide generation and dissipation are due to ITF and air-sea freshwaterflux induced stratification variations associated with El Niño-Southern Oscillation. The local dissipation efficiency q exhibits substantial seasonal and interannual variations, which may provide effective feedback to the climate processes in the low-latitude equatorial oceans.</p>


2019 ◽  
Vol 38 (3) ◽  
pp. 695-706
Author(s):  
Qian Ma ◽  
Chunxin Yuan ◽  
Xiaopei Lin ◽  
Xue’en Chen

2021 ◽  
Author(s):  
Yujun Yu ◽  
Shuya Wang ◽  
Xu Chen

<p>Internal Solitary Waves (ISW) are ubiquitous in the Andaman Sea as revealed by Synthetic Aperture Radar (SAR) images, but their generation mechanism and corresponding influence factors remain unknown. Based on a non-hydrostatic two-dimensional model, the generation of ISW across the channel between the Batti Malv Island and the Car Nicobar Island is investigated. Influences of the topography characteristics, seasonal stratification and tidal forcing are analyzed with a series of sensitivity runs. The simulated results indicate that no apparent ISW appear near the ridge because of small tidal excursion and low Froude number. Instead, they are evolved from the disintegrated internal tides which gradually steepen due to nonlinearity during propagation. East-west asymmetry of ISWs is revealed, which can be attributed to different topographic features on the two sides of the ridge. Two sills on the east side of the ridge further complicate the generation of eastward-propagating internal tides, resulting in the enhancement of ISWs in the Andaman Sea. Seasonally varying stratification has minor effect on the generation and evolution of ISWs. In addition, generation of ISW is mainly contributed by semidiurnal tidal forcing, while diurnal forcing only generates linear internal tides.</p>


2021 ◽  
Author(s):  
Wenjia Min ◽  
Zhenhua Xu ◽  
Qun Li ◽  
Peiwen Zhang ◽  
Baoshu Yin

<p>The slope area northeast of Taiwan was known as a hotspot for internal tides and internal solitary waves (ISWs), while their specific sources and generation mechanism of ISWs remain unclear. We investigate the generation and evolution processes of internal tides and ISWs with realistic configuration based on the high resolution non-hydrostatic numerical simulations. The ISWs northeastern Taiwan show a complex pattern according to the satellite image and our numerical results. ISWs propagate to various direction, and both shoreward and seaward propagating ISWs are generated on the continental slope. The ISWs observed on the continental slope-shelf region northeastern Taiwan can be generated by two ways. One is the local tide-topography interaction, and the other is the disintegration of remote internal tides generated over the I-Lan Ridge. The generated internal tides propagate northward to the Okinawa Trough, and can reach the continental slope-shelf region. During the propagation of the internal tides, the internal tides start to steepen and internal solitary waves are formed about 80 km north of I-Lan Ridge. The amplitude of the generated internal solitary waves is about 30 m. Furthermore, the Kuroshio is important to modulate the propagation and evolution of internal tides and ISWs, especially to the complexity of the ISW spatial pattern. We revealed most of the generated internal wave energy is dissipated locally over the double-canyon region, and strong mixing occur over the canyons.</p>


Sign in / Sign up

Export Citation Format

Share Document