scholarly journals Impacts of climate change on interacting plant and bird species : a trait-based perspective

2021 ◽  
Author(s):  
◽  
Larissa Nowak

Global biodiversity is changing rapidly and contemporary climate change is an important driver of this change. As climate change continues, the challenge is to understand how it may affect the future of biodiversity. This is relevant to informing policy and conservation, but it requires reliable future projections of biodiversity. Biodiversity is the variety of life on Earth which includes the diversity of species. The species on Earth are linked in diverse networks of biotic interactions. Interacting species can respond differently to climate change. This can cause spatial or temporal mismatches between interacting species and result in secondary extinctions of species that lose obligate interaction partners. Yet, accounting for biotic interactions in biodiversity projections remains challenging. One way to address this challenge is the use of trait-based approaches because the impact of climate change on interacting species is influenced by species’ functional traits, i.e., measurable characteristics of the species that influence their abiotic and biotic interactions. First, species’ functional traits influence how species respond to climate change. Second, they influence whether the species find compatible interaction partners in reshuffled species assemblages under climate change. Thus, the overarching aim of this dissertation was to explore how trait-based approaches can increase our understanding of how climate change might affect interacting species. For this, I focussed on interactions between fleshy-fruited plants and avian frugivores along a tropical elevational gradient. I investigated three principal research questions. First, I investigated how traits related to the sensitivity of avian frugivores to climate change and their adaptive capacity vary along elevation and covary across species. I combined estimates of species’ climatic niche breadth (approximating species’ sensitivity) with traits influencing species’ dispersal ability, dietary niche breadth and habitat niche breadth (aspects of species’ adaptive capacity). Species’ climatic niche breadth increased with increasing elevation, while their dispersal ability and dietary niche breadth decreased with increasing elevation. Across species, there was no significant relationship of the sensitivity of the avian frugivores to climate change and their adaptive capacity. The opposing patterns of species’ sensitivity to climate change and their adaptive capacity along elevation imply that species from assemblages at different elevations may respond differently to climate change. The independence between species’ sensitivity and adaptive capacity suggests that it is important to account for both sensitivity and adaptive capacity to fully understand how climate change might affect biodiversity. Second, I assessed how climate change might influence the co-occurrence of interaction partners with compatible traits, i.e., the functional correspondence of interacting species. I integrated future projections of species’ elevational ranges considering different vertical dispersal scenarios with analyses of the functional diversity of interacting species assemblages. The functional correspondence of fleshy-fruited plants and avian frugivores was lowest if plant and bird species were projected to contract their ranges towards higher elevations in response to increasing temperatures. Contrastingly, if species were projected to expand their ranges upslope, the functional correspondence remained close. The low functional correspondence under a scenario of range contraction indicates that plant species with specific traits might miss compatible interaction partners in future assemblages. This could negatively affect their seed dispersal ability. These results suggest that ensuring the integrity of biotic interactions under climate change requires that species can shift their ranges upslope unlimitedly. Third, I examined whether avian seed dispersal is sufficient for plants to track future temperature change along the elevational gradient. With a trait-based modelling approach, I simulated seed-dispersal distances avian frugivores can provide to fleshy-fruited woody plant species and quantified the number of long-distance dispersal events the plant species would require to fully track projected temperature shifts along elevation. Most plant species were projected to require several long-distance dispersal events to fully track the projected temperature shifts in time. However, the number of required long-distance dispersal events varied with the degree of trait matching and plant species’ traits. These findings suggest that avian seed dispersal is insufficient for plants to track future temperature change along the elevational gradient as woody plant species might not be able to undergo several consecutive long-distance dispersal events within a short time window, due to their long maturation times. These results also imply that the ability of bird-dispersed plant species to track climate change is associated with the specialization of the seed dispersal system and with plant species’ traits. Trait-based approaches are promising tools to study impacts of climate change on interacting species. The trait-based approaches that I have developed in this thesis are applicable more widely, e.g., to other types of biotic interactions, or to assess the effects of other drivers of global change. Moreover, these approaches may be further developed to model changes in biotic interactions under global change more dynamically. Taken together, I have shown how a trait-based perspective could help to account for biotic interactions in biodiversity projections. The development of such approaches and the gained knowledge are urgently needed to facilitate the conservation of biodiversity in a rapidly changing world.

Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 210-214
Author(s):  
Evan C. Fricke ◽  
Alejandro Ordonez ◽  
Haldre S. Rogers ◽  
Jens-Christian Svenning

Seed dispersal in decline Most plant species depend on animals to disperse their seeds, but this vital function is threatened by the declines in animal populations, limiting the potential for plants to adapt to climate change by shifting their ranges. Using data from more than 400 networks of seed dispersal interactions, Fricke et al . quantified the changes in seed disposal function brought about globally by defaunation. Their analyses indicate that past defaunation has severely reduced long-distance seed dispersal, cutting by more than half the number of seeds dispersed far enough to track climate change. In addition, their approach enables the prediction of seed dispersal interactions using species traits and an estimation of how these interactions translate into ecosystem functioning, thus informing ecological forecasting and the consequences of animal declines. —AMS


Science ◽  
2020 ◽  
Vol 370 (6523) ◽  
pp. 1469-1473
Author(s):  
Patrice Descombes ◽  
Camille Pitteloud ◽  
Gaëtan Glauser ◽  
Emmanuel Defossez ◽  
Alan Kergunteuil ◽  
...  

Herbivory and plant defenses exhibit a coupled decline along elevation gradients. However, the current ecological equilibrium could be disrupted under climate change, with a faster upward range shift of animals than plants. Here, we experimentally simulated this upward herbivore range shift by translocating low-elevation herbivore insects to alpine grasslands. We report that the introduction of novel herbivores and increased herbivory disrupted the vertical functional organization of the plant canopy. By feeding preferentially on alpine plants with functional traits matching their low-elevation host plants, herbivores reduced the biomass of dominant alpine plant species and favored encroachment of herbivore-resistant small-stature plant species, inflating species richness. Supplementing a direct effect of temperature, novel biotic interactions represent a neglected but major driver of ecosystem modifications under climate change.


1992 ◽  
Vol 40 (5) ◽  
pp. 599 ◽  
Author(s):  
MR Leishman ◽  
L Hughes ◽  
K French ◽  
D Armstrong ◽  
M Westoby

The distribution of many plant species will change with global climate change, depending on their ability to disperse into, and establish in, new communities. Past migrations of species under climate change have been an order of magnitude slower than the rate of predicted climate change for the next century. The limited evidence available suggests that chance long distance dispersal events will be critically important in determining migration rates. The JABOWA-derived gap replacement models and vital attributes/FATE models were examined, and the dispersal and establishment processes necessary to make improved projections of vegetation dynamics under climate change using these models were investigated. The minimum modifications of these models required to incorporate directional migration of species are described. To predict establishment success of species, it was suggested that a more fundamental understanding is needed of how establishment ability under different conditions relates to seed and seedling attributes and how this may be affected by elevated CO2. Finally, an examination was carried out of whether plant functional types based on vegetative attributes (used to model the response of adult plants) are correlated with functional types based on seed and seedling attributes. Available evidence suggests that the two sets of attributes are not strongly correlated; consequently, models of vegetation dynamics will need to incorporate seed biology explicitly.


2002 ◽  
Vol 18 (1) ◽  
pp. 143-149 ◽  
Author(s):  
MWANGI GITHIRU ◽  
LEON BENNUN ◽  
LUC LENS

Fruit-eating birds play an important role in the seed dispersal of many tropical plants (e.g. Herrera 1984), and the foraging behaviour of avian frugivores may affect their seed-dispersal capabilities (Loiselle & Blake 1999,Schupp 1993, Traveset 1994). For instance,shorter visits tend to produce less clumped seed distributions (Graham et al. 1995). Also,avian frugivores often feed on the fruits of several plant species over short periods of time (Herrera 1984, 1988a; Levey et al. 1994) in some non-random pattern (Herrera 1998). This potentially produces a predictable spatial pattern of the dispersed seeds (White & Stiles 1990). Forest destruction leads to fragmentation and degradation of the remaining habitats, which may influence patterns of adult tree distribution if the production, predation, dispersal, and/or regeneration of tree seeds is affected (Harrington et al. 1997). If dispersal of avian frugivores is disrupted by habitat fragmentation, plant species might face reduced regeneration, or even local extinction if they depend on a single, locally extinct disperser (Kellman et al. 1996). Increased predation of seeds and regenerating plants in the edges and gaps may also directly reduce regeneration rates (Corlett & Turner 1997, Harrington et al. 1997, Schupp 1988).


2017 ◽  
Vol 65 (5) ◽  
pp. 401 ◽  
Author(s):  
Trevor H. Booth

Eucalypt species have several features that make them particularly well suited for climate change studies. A key assumption is that they have very limited powers of dispersal. If this is correct, it means that climate change analyses to the end of this century can concentrate mainly on assessing whether or not eucalypt species are likely to be able to survive at their existing sites. A recent major climate change study of more than 600 eucalypt species for the period 2014–2085 has used 5 km as a usual dispersal limit for the period to 2085, with the possibility of rare long-distance events. The review presented here considers how far natural stands of eucalypt species are likely to be able to migrate in the period to 2085. It is the first review to consider eucalypt seed dispersal as its major focus. It draws on evidence from millions of years ago to the present, and from eucalypt stands in Australia and around the world. Although rare long-distance events cannot be entirely ruled out, it is concluded that the great bulk of the evidence available indicates that the most likely potential dispersal rate is equivalent to about 1–2 m per year, i.e. ~70–140 m in the period to 2085. Over decades, this is likely to occur as a series of stepwise events, associated with disturbances such as bushfires. However, limitations such as inadequate remnant eucalypt stands and extensive agricultural developments may reduce actual migration rates below even this modest potential.


2021 ◽  
Vol 193 (7) ◽  
Author(s):  
Zubair Ahmad Rather ◽  
Rameez Ahmad ◽  
Abdul Rashid Dar ◽  
Tanvir Ul Hassan Dar ◽  
Anzar Ahmad Khuroo

2016 ◽  
Vol 371 (1694) ◽  
pp. 20150280 ◽  
Author(s):  
Jessica E. Lavabre ◽  
Luis J. Gilarranz ◽  
Miguel A. Fortuna ◽  
Jordi Bascompte

Genetic markers used in combination with network analysis can characterize the fine spatial pattern of seed dispersal and assess the differential contribution of dispersers. As a case study, we focus on the seed dispersal service provided by a small guild of frugivorous birds to the common yew, Taxus baccata L., in southern Spain. We build the spatial networks of seed dispersal events between trees and seed-plots within the studied population—local network—and the spatial network that includes all dispersal events—regional network. Such networks are structured in well-defined modules, i.e. groups of tightly connected mother trees and seed-plots. Neither geographical distance, nor microhabitat type explained this modular structure, but when long-distance dispersal events are incorporated in the network it shows a relative increase in overall modularity. Independent field observations suggested the co-occurrence of two complementary groups, short- and long-distance dispersers, mostly contributing to the local and regional seed rain, respectively. The main long-distance disperser at our site, Turdus viscivorus , preferentially visits the most productive trees, thus shaping the seed rain at the landscape scale and affecting the local modular organization. We end by discussing how DNA barcoding could serve to better quantify the role of functional diversity.


Sign in / Sign up

Export Citation Format

Share Document