How important is long-distance seed dispersal for the regional survival of plant species?

2005 ◽  
Vol 11 (2) ◽  
pp. 165-172 ◽  
Author(s):  
Merel B. Soons ◽  
Wim A. Ozinga
2021 ◽  
Author(s):  
◽  
Larissa Nowak

Global biodiversity is changing rapidly and contemporary climate change is an important driver of this change. As climate change continues, the challenge is to understand how it may affect the future of biodiversity. This is relevant to informing policy and conservation, but it requires reliable future projections of biodiversity. Biodiversity is the variety of life on Earth which includes the diversity of species. The species on Earth are linked in diverse networks of biotic interactions. Interacting species can respond differently to climate change. This can cause spatial or temporal mismatches between interacting species and result in secondary extinctions of species that lose obligate interaction partners. Yet, accounting for biotic interactions in biodiversity projections remains challenging. One way to address this challenge is the use of trait-based approaches because the impact of climate change on interacting species is influenced by species’ functional traits, i.e., measurable characteristics of the species that influence their abiotic and biotic interactions. First, species’ functional traits influence how species respond to climate change. Second, they influence whether the species find compatible interaction partners in reshuffled species assemblages under climate change. Thus, the overarching aim of this dissertation was to explore how trait-based approaches can increase our understanding of how climate change might affect interacting species. For this, I focussed on interactions between fleshy-fruited plants and avian frugivores along a tropical elevational gradient. I investigated three principal research questions. First, I investigated how traits related to the sensitivity of avian frugivores to climate change and their adaptive capacity vary along elevation and covary across species. I combined estimates of species’ climatic niche breadth (approximating species’ sensitivity) with traits influencing species’ dispersal ability, dietary niche breadth and habitat niche breadth (aspects of species’ adaptive capacity). Species’ climatic niche breadth increased with increasing elevation, while their dispersal ability and dietary niche breadth decreased with increasing elevation. Across species, there was no significant relationship of the sensitivity of the avian frugivores to climate change and their adaptive capacity. The opposing patterns of species’ sensitivity to climate change and their adaptive capacity along elevation imply that species from assemblages at different elevations may respond differently to climate change. The independence between species’ sensitivity and adaptive capacity suggests that it is important to account for both sensitivity and adaptive capacity to fully understand how climate change might affect biodiversity. Second, I assessed how climate change might influence the co-occurrence of interaction partners with compatible traits, i.e., the functional correspondence of interacting species. I integrated future projections of species’ elevational ranges considering different vertical dispersal scenarios with analyses of the functional diversity of interacting species assemblages. The functional correspondence of fleshy-fruited plants and avian frugivores was lowest if plant and bird species were projected to contract their ranges towards higher elevations in response to increasing temperatures. Contrastingly, if species were projected to expand their ranges upslope, the functional correspondence remained close. The low functional correspondence under a scenario of range contraction indicates that plant species with specific traits might miss compatible interaction partners in future assemblages. This could negatively affect their seed dispersal ability. These results suggest that ensuring the integrity of biotic interactions under climate change requires that species can shift their ranges upslope unlimitedly. Third, I examined whether avian seed dispersal is sufficient for plants to track future temperature change along the elevational gradient. With a trait-based modelling approach, I simulated seed-dispersal distances avian frugivores can provide to fleshy-fruited woody plant species and quantified the number of long-distance dispersal events the plant species would require to fully track projected temperature shifts along elevation. Most plant species were projected to require several long-distance dispersal events to fully track the projected temperature shifts in time. However, the number of required long-distance dispersal events varied with the degree of trait matching and plant species’ traits. These findings suggest that avian seed dispersal is insufficient for plants to track future temperature change along the elevational gradient as woody plant species might not be able to undergo several consecutive long-distance dispersal events within a short time window, due to their long maturation times. These results also imply that the ability of bird-dispersed plant species to track climate change is associated with the specialization of the seed dispersal system and with plant species’ traits. Trait-based approaches are promising tools to study impacts of climate change on interacting species. The trait-based approaches that I have developed in this thesis are applicable more widely, e.g., to other types of biotic interactions, or to assess the effects of other drivers of global change. Moreover, these approaches may be further developed to model changes in biotic interactions under global change more dynamically. Taken together, I have shown how a trait-based perspective could help to account for biotic interactions in biodiversity projections. The development of such approaches and the gained knowledge are urgently needed to facilitate the conservation of biodiversity in a rapidly changing world.


Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
pp. 210-214
Author(s):  
Evan C. Fricke ◽  
Alejandro Ordonez ◽  
Haldre S. Rogers ◽  
Jens-Christian Svenning

Seed dispersal in decline Most plant species depend on animals to disperse their seeds, but this vital function is threatened by the declines in animal populations, limiting the potential for plants to adapt to climate change by shifting their ranges. Using data from more than 400 networks of seed dispersal interactions, Fricke et al . quantified the changes in seed disposal function brought about globally by defaunation. Their analyses indicate that past defaunation has severely reduced long-distance seed dispersal, cutting by more than half the number of seeds dispersed far enough to track climate change. In addition, their approach enables the prediction of seed dispersal interactions using species traits and an estimation of how these interactions translate into ecosystem functioning, thus informing ecological forecasting and the consequences of animal declines. —AMS


2020 ◽  
Author(s):  
Jelle Treep ◽  
Monique de Jager ◽  
Frederic Bartumeus ◽  
Merel B. Soons

Abstract Background – Plant dispersal is a critical factor driving ecological responses to global changes. Knowledge on the mechanisms of dispersal is rapidly advancing, but selective pressures responsible for the evolution of dispersal strategies remain elusive. Recent advances in animal movement ecology identified general strategies that may optimize efficiency in animal searches for food or habitat. We here explore the potential for evolution of similar general movement strategies for plants.Methods – We propose that seed dispersal in plants can be viewed as a strategic search for suitable habitat, where the probability of finding such locations has been optimized through evolution of appropriate dispersal kernels. Using model simulations, we demonstrate how dispersal strategies can optimize key dispersal trade-offs between finding habitat, avoiding kin competition, and colonizing new patches. These trade-offs depend strongly on the landscape, resulting in a tight link between optimal dispersal strategy and spatiotemporal habitat distribution.Results – Our findings reveal that multi-scale seed dispersal strategies that combine short-distance and long-distance dispersal, including Lévy-like dispersal, are optimal across a wide range of dynamic and patchy landscapes. Static patchy landscapes select for short-distance dominated dispersal strategies, while uniform and highly unpredictable landscapes both select for long-distance dominated dispersal strategies.Conclusions – By viewing plant seed dispersal as a strategic search for suitable habitat, we provide a reference framework for the analysis of plant dispersal data. This reference framework helps identify plant species’ dispersal strategies, the evolutionary forces determining these strategies and their ecological consequences, such as a potential mismatch between plant dispersal strategy and altered spatiotemporal habitat dynamics due to land use change. Our perspective opens up directions for future studies, including exploration of composite search behaviour and ‘informed searches’ in plant species with directed dispersal.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Stephen J. Wright ◽  
Marco Heurich ◽  
Carsten M. Buchmann ◽  
Reinhard Böcker ◽  
Frank M. Schurr

Abstract Background Long-distance seed dispersal (LDD) has strong impacts on the spatiotemporal dynamics of plants. Large animals are important LDD vectors because they regularly transport seeds of many plant species over long distances. While there is now ample evidence that behaviour varies considerably between individual animals, it is not clear to what extent inter-individual variation in behaviour alters seed dispersal by animals. Methods We study how inter-individual variation in the movement and feeding behaviour of one of Europe’s largest herbivores (the red deer, Cervus elaphus) affects internal seed dispersal (endozoochory) of multiple plant species. We combine movement data of 21 individual deer with measurements of seed loads in the dung of the same individuals and with data on gut passage time. These data serve to parameterize a model of passive dispersal that predicts LDD in three orientations (horizontal as well as upward and downward in elevation). With this model we investigate to what extent per-seed probabilities of LDD and seed load vary between individuals and throughout the vegetation period (May–December). Subsequently, we test whether per-seed LDD probability and seed load are positively (or negatively) correlated so that more mobile animals disperse more (or less) seeds. Finally, we examine whether non-random associations between per-seed LDD probability and seed load affect the LDD of individual plant species. Results The studied deer dispersed viable seeds of at least 62 plant species. Deer individuals varied significantly in per-seed LDD probability and seed loads. However, more mobile animals did not disperse more or less seeds than less mobile ones. Plant species also did not differ significantly in the relationship between per-seed LDD probability and seed load. Yet plant species differed in how their seed load was distributed across deer individuals and in time, and this caused their LDD potential to differ more than twofold. For several plant species, we detected non-random associations between per-seed LDD probability and seed load that generally increased LDD potential. Conclusions Inter-individual variation in movement and feeding behaviour means that certain deer are substantially more effective LDD vectors than others. This inter-individual variation reduces the reliability of LDD and increases the sensitivity of LDD to the decline of deer populations. Variation in the dispersal services of individual animals should thus be taken into account in models in order to improve LDD projections.


2011 ◽  
Vol 17 (4) ◽  
pp. 725-738 ◽  
Author(s):  
Jan Pergl ◽  
Jana Müllerová ◽  
Irena Perglová ◽  
Tomáš Herben ◽  
Petr Pyšek

2005 ◽  
Vol 166 (3) ◽  
pp. 368 ◽  
Author(s):  
Katul ◽  
Porporato ◽  
Nathan ◽  
Siqueira ◽  
Soons ◽  
...  

2014 ◽  
Vol 74 (3) ◽  
pp. 588-596 ◽  
Author(s):  
RML Silveira ◽  
B Weiss

We analysed the germination of seeds after their passage through the digestive tract of small floodplain fishes. Samples were collected in five open flooded fields of the northern Pantanal in March 2011. All fishes were sacrificed and their intestinal contents were removed. The fecal material was weighed and stored at 4°C in a GF/C filter wrapped in aluminum foil. The material was then transferred to a receptacle containing sterilised soil from the sampling area. The fecal samples were kept in a germination chamber for 68 days and then transferred to a greenhouse for another 67 days. We collected a total of 45 fish species and 1014 individuals which produced a total amount of 32g of fresh fecal mass and 11 seedlings. We were able to identify six seedlings: two Banara arguta, two Steinchisma laxa, one Hymenachne amplexicaulis and one Luziola sp.. The fish species that produced samples with seedlings were Astyanax assuncionensis, Metynnis mola, Plesiolebias glaucopterus, Acestrorhyncus pantaneiro and Anadoras wendelli. With the exception of B. arguta the remaining plant species and all fish species were not known to be associated with the seed dispersal process of these plants. We found a ratio of 0.435 seedlings.g–1 of fresh fecal material, which is 100 times higher than the amount of seedlings encountered in fresh soil mass (92,974 grams) in seed bank studies conducted in the same study area. In particular, Astyanax assuncionensis and Metynnis mola were among the most frequent and most abundant fish taxa in the area. Together with the high seed concentration in the fish fecal material, this evidence allows us to conclude that such fish species may play an important role in seed dispersal in the herbaceous plants of the Pantanal.


Sign in / Sign up

Export Citation Format

Share Document