scholarly journals Shear Strength of Reinforced High-Performance Concrete Wide Beams

2021 ◽  
Vol 33 (2) ◽  
2018 ◽  
Vol 15 ◽  
pp. 1-5
Author(s):  
Tomáš Blažek ◽  
Jakub Řepka ◽  
Tomáš Vlach

This article deals with the test of selected adhesives for glued connection of high performance concrete and steel plates with various surface treatments. Results of this experiment can be used as a basis for the possible anchoring of concrete facade elements to the steel grate, the possible bonding of steel anchors on the surface of concrete facade elements. High performance concrete is a concrete that exceeds the compressive strength 100 MPa after 28 days. The second adherent is the uncoated steel and the steel with zinc coating as a second variant. Samples were tested in two different ways. The first experiment verified the single tensile strength of bond connection. The second test verified the shear strength, which is very important for connection designing.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nasser Hakeem Tu’ma ◽  
Mustafa Raad Aziz ◽  
Haider Jabbar J. Barry

Abstract Estimating the shear strength of Ultra-High-Performance Concrete (UHPC), with high compressive and tensile strengths, is complicated by many variables that affecting its behavior. Residual tensile stress (RTS) plays an important role in raising the efficiency of both types of resistance, especially shear strength due to the presence of steel fibers, which makes it difficult to quantify the residual tensile stress due to the different failure patterns of these fibers and the distribution mechanism within the concrete matrix. There is no study to date in assessing residual tensile stress of UHPC structural members of the variable section. Thirteen beams were selected as an experimental program to study six main variables in determining shear strength. Stirrups ratio, flexural reinforcement ratio, the volumetric fraction of steel fibers, geometry changing, existing openings along the longitudinal axis, and shear span to depth ratio. According to on Tests results, RTS is compatible with most of the global specifications.


2019 ◽  
Vol 4 (2) ◽  
pp. 31 ◽  
Author(s):  
Islam Mantawy ◽  
Rahulreddy Chennareddy ◽  
Moneeb Genedy ◽  
Mahmoud Reda Taha

Prefabricated concrete bridge deck panels are utilized in Accelerated Bridge Construction (ABC) to simplify bridge deck construction. Concrete with good bond and shear strength as well as excellent flowability is required to fill bridge deck closure joints. This paper discusses the use of polymer concrete (PC) for bridge deck closure joints in ABC. PC produced using poly methyl methacrylate and standard aggregate was tested. Test results of PC are compared to Ultra-High Performance Concrete (UHPC). Development length, lap splice length and shear strength of unreinforced PC were tested. It is shown that PC has a development length of 3.6 to 4.1 times the reinforcing bar diameter that is close to one-half the development length of 6 to 8 times the bar diameter required with UHPC. PC also showed a shorter splice length compared with that reported for UHPC. Finally, unreinforced PC showed shear strength that is twice that of UHPC. It is evident that using PC in bridge deck closure joints in ABC can improve constructability and provide cost-savings and eliminate reinforcing bar congestion.


2019 ◽  
Vol 22 (8) ◽  
pp. 2006-2018 ◽  
Author(s):  
Jianan Qi ◽  
Xiaomeng Ding ◽  
Zhen Wang ◽  
Yuqing Hu

This article presents an experimental and theoretical investigation on the shear behavior of fiber-reinforced ultra-high-performance concrete beams reinforced with high-strength steel. The test parameters included the fiber volume fraction, fiber type, and stirrup ratio. The test results indicate that the shear failure in ultra-high-performance concrete beams is not brittle and catastrophic but has ductility characteristics. A moderate quantity of stirrups can significantly improve the shear behavior of ultra-high-performance concrete beams, as reflected in the thorough propagation of cracks in both shear span and pure bending zone. The depth of the compression zone considering concrete tension was derived based on the deformation compatibility and force equilibrium equations for both serviceability limit state and ultimate limit state. The comparison of the proposed method and classical beam theory shows that the concrete tension should not be neglected in the serviceability limit state analysis. After cracking, the concrete tension can be neglected for simplicity when the beam is heavily reinforced and should be considered when the beam is lightly reinforced. Then, a shear strength model was established based on Rankine’s failure criteria, the truss model, and Association Francaise de Génie Civil-Sétra. Finally, the proposed shear strength equation was verified by the test results and compared with other shear strength equations.


Sign in / Sign up

Export Citation Format

Share Document